Found problems: 85335
2020 Dutch IMO TST, 1
In acute-angled triangle $ABC, I$ is the center of the inscribed circle and holds $| AC | + | AI | = | BC |$. Prove that $\angle BAC = 2 \angle ABC$.
2013 Greece JBMO TST, 1
If x,y<0 prove that $\left(x+\frac{2}{y} \right) \left(\frac{y}{x}+2 \right)\geq 8$. When do we have equality?
2003 Costa Rica - Final Round, 2
Let $AB$ be a diameter of circle $\omega$. $\ell$ is the tangent line to $\omega$ at $B$. Take two points $C$, $D$ on $\ell$ such that $B$ is between $C$ and $D$. $E$, $F$ are the intersections of $\omega$ and $AC$, $AD$, respectively, and $G$, $H$ are the intersections of $\omega$ and $CF$, $DE$, respectively. Prove that $AH=AG$.
2024 Harvard-MIT Mathematics Tournament, 7
Positive integers $a, b,$ and $c$ have the property that $a^b, b^c,$ and $c^a$ end in $4, 2,$ and $9,$ respectively. Compute the minimum possible value of $a+b+c.$
2009 Postal Coaching, 5
Let $P$ be an interior point of a circle and $A_1,A_2...,A_{10}$ be points on the circle such that $\angle A_1PA_2 = \angle A_2PA_3 = ... = \angle A_{10}PA_1 = 36^o$. Prove that $PA_1 + PA_3 + PA_5 + PA_7 +PA_9 = PA_2 + PA_4 + PA_6 + PA_8 + PA_{10}$.
2017 Junior Balkan Team Selection Tests - Romania, 3
Let $I$ be the incenter of the scalene $\Delta ABC$, such, $AB<AC$, and let $I'$ be the reflection of point $I$ in line $BC$. The angle bisector $AI$ meets $BC$ at $D$ and circumcircle of $\Delta ABC$ at $E$. The line $EI'$ meets the circumcircle at $F$. Prove, that,
$\text{(i) } \frac{AI}{IE}=\frac{ID}{DE}$
$\text{(ii) } IA=IF$
2022 Bulgarian Spring Math Competition, Problem 12.1
$ABCD$ is circumscribed in a circle $k$, such that $[ACB]=s$, $[ACD]=t$, $s<t$. Determine the smallest value of $\frac{4s^2+t^2}{5st}$ and when this minimum is achieved.
2013 Bangladesh Mathematical Olympiad, 8
$\triangle ABC$ is an acute angled triangle. Perpendiculars drawn from its vertices on the opposite sides are $AD$, $BE$ and $CF$. The line parallel to $ DF$ through $E$ meets $BC$ at $Y$ and $BA$ at $X$. $DF$ and $CA$ meet at $Z$. Circumcircle of $XYZ$ meets $AC$ at $S$. Given, $\angle B=33 ^\circ.$ find the angle $\angle FSD $ with proof.
1998 Croatia National Olympiad, Problem 4
Among any $79$ consecutive natural numbers there exists one whose sum of digits is divisible by $13$. Find a sequence of $78$ consecutive natural numbers for which the above statement fails.
2010 IFYM, Sozopol, 1
The inscribed circle of $\Delta ABC$ is tangent to $AC$ and $BC$ in points $M$ and $N$ respectively. Line $MN$ intersects line $AB$ in point $P$, so that $B$ is between $A$ and $P$. Determine $\angle ABC$, if $BP=CM$.
2016 India Regional Mathematical Olympiad, 5
Let $ABC$ be a triangle , $AD$ an altitude and $AE$ a median . Assume $B,D,E,C$ lie in that order on the line $BC$ . Suppose the incentre of triangle $ABE$ lies on $AD$ and he incentre of triangle $ADC$ lies on $AE$ . Find ,with proof ,the angles of triangle $ABC$ .
1997 IMC, 3
Let $A,B \in \mathbb{R}^{n\times n}$ with $A^2+B^2=AB$. Prove that if $BA-AB$ is invertible then $3|n$.
2010 ELMO Shortlist, 7
The game of circulate is played with a deck of $kn$ cards each with a number in $1,2,\ldots,n$ such that there are $k$ cards with each number. First, $n$ piles numbered $1,2,\ldots,n$ of $k$ cards each are dealt out face down. The player then flips over a card from pile $1$, places that card face up at the bottom of the pile, then next flips over a card from the pile whose number matches the number on the card just flipped. The player repeats this until he reaches a pile in which every card has already been flipped and wins if at that point every card has been flipped. Hamster has grown tired of losing every time, so he decides to cheat. He looks at the piles beforehand and rearranges the $k$ cards in each pile as he pleases. When can Hamster perform this procedure such that he will win the game?
[i]Brian Hamrick.[/i]
1964 All Russian Mathematical Olympiad, 045
a) Given a convex hexagon $ABCDEF$ with all the equal angles. Prove that $$|AB|-|DE| = |EF|-|BC| = |CD|-|FA|$$
b) The opposite problem:
Prove that it is possible to construct a convex hexagon with equal angles of six segments $a_1,a_2,...,a_6$, whose lengths satisfy the condition $$a_1-a_4 = a_5-a_2 = a_3-a_6$$
2023 Indonesia Regional, 3
Find the maximum value of an integer $B$ such that for every 9 distinct natural number with the sum of $2023$, there must exist a sum of 4 of the number that is greater than or equal to $B$
2019 IMC, 8
Let $x_1,\ldots,x_n$ be real numbers. For any set $I\subset\{1,2,…,n\}$ let $s(I)=\sum_{i\in I}x_i$. Assume that the function $I\to s(I)$ takes on at least $1.8^n$ values where $I$ runs over all $2^n$ subsets of $\{1,2,…,n\}$. Prove that the number of sets $I\subset \{1,2,…,n\}$ for which $s(I)=2019$ does not exceed $1.7^n$.
[i]Proposed by Fedor Part and Fedor Petrov, St. Petersburg State University[/i]
2017 Lusophon Mathematical Olympiad, 2
Let ABCD be a parallelogram, E the midpoint of AD and F the projection of B on CE. Prove that the triangle ABF is isosceles.
2016 USA TSTST, 1
Let $A = A(x,y)$ and $B = B(x,y)$ be two-variable polynomials with real coefficients. Suppose that $A(x,y)/B(x,y)$ is a polynomial in $x$ for infinitely many values of $y$, and a polynomial in $y$ for infinitely many values of $x$. Prove that $B$ divides $A$, meaning there exists a third polynomial $C$ with real coefficients such that $A = B \cdot C$.
[i]Proposed by Victor Wang[/i]
2006 Sharygin Geometry Olympiad, 12
In the triangle $ABC$, the bisector of angle $A$ is equal to the half-sum of the height and median drawn from vertex $A$. Prove that if $\angle A$ is obtuse, then $AB = AC$.
1999 Harvard-MIT Mathematics Tournament, 8
A circle is randomly chosen in a circle of radius $1$ in the sense that a point is randomly chosen for its center, then a radius is chosen at random so that the new circle is contained in the original circle. What is the probability that the new circle contains the center of the original circle?
1984 Vietnam National Olympiad, 2
Given two real numbers $a, b$ with $a \neq 0$, find all polynomials $P(x)$ which satisfy
\[xP(x - a) = (x - b)P(x).\]
2020-IMOC, A1
$\definecolor{A}{RGB}{190,0,60}\color{A}\fbox{A1.}$ Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $$\definecolor{A}{RGB}{80,0,200}\color{A} x^4+y^4+z^4\ge f(xy)+f(yz)+f(zx)\ge xyz(x+y+z)$$holds for all $a,b,c\in\mathbb{R}$.
[i]Proposed by [/i][b][color=#FFFF00]usjl[/color][/b].
[color=#B6D7A8]#1733[/color]
MathLinks Contest 5th, 2.3
Let $a, b, c$ be positive numbers such that $abc \le 8$. Prove that
$$\frac{1}{a^2 - a + 1} +\frac{1}{b^2 - b + 1}++\frac{1}{c^2 - c + 1} \ge 1$$
2006 Kyiv Mathematical Festival, 3
See all the problems from 5-th Kyiv math festival [url=http://www.mathlinks.ro/Forum/viewtopic.php?p=506789#p506789]here[/url]
Let $x,y>0$ and $xy\ge1.$ Prove that $x^3+y^3+4xy\ge x^2+y^2+x+y+2.$
Let $x,y>0$ and $xy\ge1.$ Prove that $2(x^3+y^3+xy+x+y)\ge5(x^2+y^2).$
2022 Bolivia IMO TST, P1
Find all possible values of $\frac{1}{x}+\frac{1}{y}$, if $x,y$ are real numbers not equal to $0$ that satisfy
$$x^3+y^3+3x^2y^2=x^3y^3$$