This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 HMNT, 9

Tags: hmmt
The vertices of a regular nonagon are colored such that $1)$ adjacent vertices are different colors and $2)$ if $3$ vertices form an equilateral triangle, they are all different colors. Let $m$ be the minimum number of colors needed for a valid coloring, and n be the total number of colorings using $m$ colors. Determine $mn$. (Assume each vertex is distinguishable.)

1987 Tournament Of Towns, (144) 1

Suppose $p(x)$ is a polynomial with integer coefficients. It is known that $p(a) - p(b) = 1$ (where $a$ and $b$ are integers). Prove that $a$ and $b$ differ by $1$ . (Folklore)

1974 Polish MO Finals, 5

Prove that for any natural numbers $n,r$ with $r + 3 \le n $the binomial coefficients $n \choose r$, $n \choose r+1$, $n \choose r+2 $, $n \choose r+3 $ cannot be successive terms of an arithmetic progression.

2020 Purple Comet Problems, 3

Tags: algebra
The mean number of days per month in $2020$ can be written as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2020 LMT Spring, 10

Tags:
Three mutually externally tangent circles are internally tangent to a circle with radius $1$. If two of the inner circles have radius $\frac{1}{3}$, the largest possible radius of the third inner circle can be expressed in the form $\frac{a+b\sqrt{c}}{d}$ where $c$ is squarefree and $\gcd(a,b,d)=1$. Find $a+b+c+d$.

2012 Saint Petersburg Mathematical Olympiad, 3

Tags: geometry
$ABCD$ is inscribed. Bisector of angle between diagonals intersect $AB$ anc $CD$ at $X$ and $Y$. $M,N$ are midpoints of $AD,BC$. $XM=YM$ Prove, that $XN=YN$.

MBMT Team Rounds, 2020.45

In the Flatland Congress there are senators who are on committees. Each senator is on at least one committee, and each committee has at least one senator. The rules for forming committees are as follows: $\bullet$ For any pair of senators, there is exactly one committee which contains both senators. $\bullet$ For any two committees, there is exactly one senator who is on both committees. $\bullet$ There exist a set of four senators, no three of whom are all on the same committee. $\bullet$ There exists a committee with exactly $6$ senators. If there are at least $25$ senators in this Congress, compute the minimum possible number of senators $s$ and minimum number of committees $c$ in this Congress. Express your answer in the form $(s, c)$.

2018 AMC 8, 20

In $\triangle ABC,$ a point $E$ is on $\overline{AB}$ with $AE=1$ and $EB=2.$ Point $D$ is on $\overline{AC}$ so that $\overline{DE} \parallel \overline{BC}$ and point $F$ is on $\overline{BC}$ so that $\overline{EF} \parallel \overline{AC}.$ What is the ratio of the area of $CDEF$ to the area of $\triangle ABC?$ [asy] size(7cm); pair A,B,C,DD,EE,FF; A = (0,0); B = (3,0); C = (0.5,2.5); EE = (1,0); DD = intersectionpoint(A--C,EE--EE+(C-B)); FF = intersectionpoint(B--C,EE--EE+(C-A)); draw(A--B--C--A--DD--EE--FF,black+1bp); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",DD,W); label("$E$",EE,S); label("$F$",FF,NE); label("$1$",(A+EE)/2,S); label("$2$",(EE+B)/2,S); [/asy] $\textbf{(A) } \frac{4}{9} \qquad \textbf{(B) } \frac{1}{2} \qquad \textbf{(C) } \frac{5}{9} \qquad \textbf{(D) } \frac{3}{5} \qquad \textbf{(E) } \frac{2}{3}$

2018 China Northern MO, 8

Prove that there exist infinite positive integer $n,$ such that $2018 | \left( 1+2^n+3^n+4^n \right).$

2016 Tournament Of Towns, 3

Rectangle $p*q,$ where $p,q$ are relatively coprime positive integers with $p <q$ is divided into squares $1*1$.Diagonal which goes from lowest left vertice to highest right cuts triangles from some squares.Find sum of perimeters of all such triangles.

2011 Harvard-MIT Mathematics Tournament, 9

Tags: hmmt
Let $\left\{ a_n \right\}$ and $\left\{ b_n \right\}$ be sequences defined recursively by $a_0 =2$; $b_0 = 2$, and $a_{n+1} = a_n \sqrt{1+a_n^2+b_n^2}-b_n$; $b_{n+1} = b_n\sqrt{1+a_n^2+b_n^2} + a_n$. Find the ternary (base 3) representation of $a_4$ and $b_4$.

2002 Abels Math Contest (Norwegian MO), 4

An integer is given $N> 1$. Arne and Britt play the following game: (1) Arne says a positive integer $A$. (2) Britt says an integer $B> 1$ that is either a divisor of $A$ or a multiple of $A$. ($A$ itself is a possibility.) (3) Arne says a new number $A$ that is either $B - 1, B$ or $B + 1$. The game continues by repeating steps 2 and 3. Britt wins if she is okay with being told the number $N$ before the $50$th has been said. Otherwise, Arne wins. a) Show that Arne has a winning strategy if $N = 10$. b) Show that Britt has a winning strategy if $N = 24$. c) For which $N$ does Britt have a winning strategy?

2016 District Olympiad, 2

Let $ a,b,c\in\mathbb{C}^* $ pairwise distinct, having the same absolute value, and satisfying: $$ a^2+b^2+c^2-ab-bc-ca=0. $$ Prove that $ a,b,c $ represents the affixes of the vertices of a right or equilateral triangle.

2019 AMC 10, 1

Tags:
Alicia had two containers. The first was $\tfrac{5}{6}$ full of water and the second was empty. She poured all the water from the first container into the second container, at which point the second container was $\tfrac{3}{4}$ full of water. What is the ratio of the volume of the first container to the volume of the second container? $\textbf{(A) } \frac{5}{8} \qquad \textbf{(B) } \frac{4}{5} \qquad \textbf{(C) } \frac{7}{8} \qquad \textbf{(D) } \frac{9}{10} \qquad \textbf{(E) } \frac{11}{12}$

2002 AMC 12/AHSME, 6

Tags: quadratic , vieta
Suppose that $ a$ and $ b$ are are nonzero real numbers, and that the equation $ x^2\plus{}ax\plus{}b\equal{}0$ has solutions $ a$ and $ b$. Then the pair $ (a,b)$ is $ \textbf{(A)}\ (\minus{}2,1) \qquad \textbf{(B)}\ (\minus{}1,2) \qquad \textbf{(C)}\ (1,\minus{}2) \qquad \textbf{(D)}\ (2,\minus{}1) \qquad \textbf{(E)}\ (4,4)$

2024 Spain Mathematical Olympiad, 3

Tags: geometry
Let $ABC$ be a scalene triangle and $P$ be an interior point such that $\angle PBA=\angle PCA$. The lines $PB$ and $PC$ intersect the internal and external bisectors of $\angle BAC$ at $Q$ and $R$, respectively. Let $S$ be the point such that $CS$ is parallel to $AQ$ and $BS$ is parallel to $AR$. Prove that $Q$, $R$ and $S$ are colinear.

1977 IMO Shortlist, 16

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

2001 Moldova Team Selection Test, 4

Tags:
For every nonnegative integer $n{}$ let $f(n)$ be the smallest number of digits $1$ which can represent the number $n{}$ using the symbols $"+", "-", "\times", "(", ")"$. For example, $80=(1+1+1+1+1)\times(1+1+1+1)\times(1+1+1+1)$ and $f(80)\leq 13$. Prove that $2\log_3 n \leq f(n) < 5\log_3 n$ for every $n>1$.

2017 China Team Selection Test, 2

Find the least positive number m such that for any polynimial f(x) with real coefficients, there is a polynimial g(x) with real coefficients (degree not greater than m) such that there exist 2017 distinct number $a_1,a_2,...,a_{2017}$ such that $g(a_i)=f(a_{i+1})$ for i=1,2,...,2017 where indices taken modulo 2017.

Novosibirsk Oral Geo Oly VIII, 2023.7

A square with side $1$ is intersected by two parallel lines as shown in the figure. Find the sum of the perimeters of the shaded triangles if the distance between the lines is also $1$. [img]https://cdn.artofproblemsolving.com/attachments/9/e/4e70610b80871325a72e923a0909eff06aebfa.png[/img]

2014 Online Math Open Problems, 20

Let $n = 2188 = 3^7+1$ and let $A_0^{(0)}, A_1^{(0)}, ..., A_{n-1}^{(0)}$ be the vertices of a regular $n$-gon (in that order) with center $O$ . For $i = 1, 2, \dots, 7$ and $j=0,1,\dots,n-1$, let $A_j^{(i)}$ denote the centroid of the triangle \[ \triangle A_j^{(i-1)} A_{j+3^{7-i}}^{(i-1)} A_{j+2 \cdot 3^{7-i}}^{(i-1)}. \] Here the subscripts are taken modulo $n$. If \[ \frac{|OA_{2014}^{(7)}|}{|OA_{2014}^{(0)}|} = \frac{p}{q} \] for relatively prime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Yang Liu[/i]

2022 Regional Olympiad of Mexico West, 1

Find a subset of $\{1,2, ...,2022\}$ with maximum number of elements such that it does not have two elements $a$ and $b$ such that $a = b + d$ for some divisor $d$ of $b$.

2001 Taiwan National Olympiad, 1

Let $A$ be a set with at least $3$ integers, and let $M$ be the maximum element in $A$ and $m$ the minimum element in $A$. it is known that there exist a polynomial $P$ such that: $m<P(a)<M$ for all $a$ in $A$. And also $p(m)<p(a)$ for all $a$ in $A-(m,M)$. Prove that $n<6$ and there exist integers $b$ and $c$ such that $p(x)+x^2+bx+c$ is cero in $A$.

2024 Turkey MO (2nd Round), 3

For all $n\ge2$ positive integer, let $f(n)$ denote the product of all distinct prime divisors of $n$. For example, $f(5)=5$, $f(8)=2$, and $f(12)=6$. Given a sequence ${a_n}$, where $a_1\ge2$, defined as follows: $$a_{n+1}=a_n+f(a_n)$$ Show that for any prime $p$, there exists a term $a_k$ in the sequence such that $p|a_k$.

2024 Bulgaria MO Regional Round, 12.1

Let $ABC$ be an acute triangle with midpoint $M$ of $AB$. The point $D$ lies on the segment $MB$ and $I_1, I_2$ denote the incenters of $\triangle ADC$ and $\triangle BDC$. Given that $\angle I_1MI_2=90^{\circ}$, show that $CA=CB$.