Found problems: 85335
2018 SIMO, Q2
Let $x_1, x_2, x_3, y_1, y_2, y_3$ be real numbers in $[-1, 1]$. Find the maximum value of
\[(x_1y_2-x_2y_1)(x_2y_3-x_3y_2)(x_3y_1-x_1y_3).\]
1977 All Soviet Union Mathematical Olympiad, 248
Given natural numbers $x_1,x_2,...,x_n,y_1,y_2,...,y_m$. The following condition is valid: $$(x_1+x_2+...+x_n)=(y_1+y_2+...+y_m)<mn \,\,\,\, (*)$$ Prove that it is possible to delete some terms from (*) (not all and at least one) and to obtain another valid condition.
2021 Science ON all problems, 4
Denote $\textrm{SL}_2 (\mathbb{Z})$ and $\textrm{SL}_3 (\mathbb{Z})$
the sets of matrices with $2$ rows and $2$ columns, respectively with $3$ rows and $3$ columns, with integer entries and their determinant equal to $1$.
$\textbf{(a)}$ Let $N$ be a positive integer and let $g$ be a matrix with $3$ rows and $3$ columns, with rational entries. Suppose that for each positive divisor $M$ of $N$ there exists a rational number $q_M$, a positive divisor $f (M)$ of $N$ and a matrix $\gamma_M \in \textrm{SL}_3 (\mathbb{Z})$ such that
\[ g = q_M \left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & f (M)
\end{array}\right) \gamma_M \left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & M^{}
\end{array}\right) . \]
Moreover, if $q_1 = 1$, prove that $\det (g) = N$ and $g$ has the following shape:
\[ g = \left(\begin{array}{ccc}
a_{11} & a_{12} & Na_{13}\\
a_{21} & a_{22} & Na_{23}\\
Na_{31} & Na_{32} & Na_{33}
\end{array}\right), \]
where $a_{ij}$ are all integers, $i, j \in \{ 1, 2, 3 \} .$
$\textbf{(b)}$ Provide an example of a matrix $g$ with $2$ rows and $2$ columns which satisfies the following properties:
$\bullet$ For each positive divisor $M$ of $6$ there exists a rational number $q_M$, a positive divisor $f (M)$ of $6$ and a matrix $\gamma_M \in \textrm{SL}_2 (\mathbb{Z})$ such that
\[ g = q_M \left(\begin{array}{cc}
1 & 0\\
0 & f (M)
\end{array}\right) \gamma_M \left(\begin{array}{cc}
1 & 0\\
0 & M^{}
\end{array}\right) \]
and $q_1 = 1$.
$\bullet$ $g$ does not have its determinant equal to $6$ and is not of the shape
\[ g = \left(\begin{array}{cc}
a_{22} & 6 a_{23}\\
6 a_{32} & 6 a_{33}
\end{array}\right), \]
where $a_{ij}$ are all positive integers, $i, j \in \{ 2, 3 \}$.
[i](Radu Toma)[/i]
2007 Romania National Olympiad, 4
Given a set $A$ and a function $f: A\rightarrow A$, denote by $f_{1}(A)=f(A)$, $f_{2}(A)=f(f_{1}(A))$, $f_{3}(A)=f(f_{2}(A))$, and so on, ($f_{n}(A)=f(f_{n-1}(A))$, where the notation $f(B)$ means the set $\{ f(x) \ : \ x\in B\}$ of images of points from $B$).
Denote also by $f_{\infty}(A)=f_{1}(A)\cap f_{2}(A)\cap \ldots = \bigcap_{n\geq 1}f_{n}(A)$.
a) Show that if $A$ is finite, then $f(f_{\infty}(A))=f_{\infty}(A)$.
b) Determine if the above is true for $A=\mathbb{N}\times \mathbb{N}$ and the function
\[f\big((m,n)\big)=\begin{cases}(m+1,n) & \mbox{if }n\geq m\geq 1 \\ (0,0) & \mbox{if }m>n \\ (0,n+1) & \mbox{if }n=0. \end{cases}\]
2017 Yasinsky Geometry Olympiad, 6
Given a trapezoid $ABCD$ with bases $BC$ and $AD$, with $AD=2 BC$. Let $M$ be the midpoint of $AD, E$ be the intersection point of the sides $AB$ and $CD$, $O$ be the intersection point of $BM$ and $AC, N$ be the intersection point of $EO$ and $BC$. In what ratio, point $N$ divides the segment $BC$?
2003 All-Russian Olympiad, 2
The diagonals of a cyclic quadrilateral $ABCD$ meet at $O$. Let $S_1, S_2$ be the circumcircles of triangles $ABO$ and $CDO$ respectively, and $O,K$ their intersection points. The lines through $O$ parallel to $AB$ and $CD$ meet $S_1$ and $S_2$ again at $L$ and $M$, respectively. Points $P$ and $Q$ on segments $OL$ and $OM$ respectively are taken such that $OP : PL = MQ : QO$. Prove that $O,K, P,Q$ lie on a circle.
2022 Novosibirsk Oral Olympiad in Geometry, 7
Altitudes $AA_1$ and $CC_1$ of an acute-angled triangle $ABC$ intersect at point $H$. A straight line passing through point $H$ parallel to line $A_1C_1$ intersects the circumscribed circles of triangles $AHC_1$ and $CHA_1$ at points $X$ and $Y$, respectively. Prove that points $X$ and $Y$ are equidistant from the midpoint of segment $BH$.
2011 May Olympiad, 5
We consider all $14$-digit positive integers, divisible by $18$, whose digits are exclusively $ 1$ and $2$, but there are no consecutive digits $2$. How many of these numbers are there?
2014 Sharygin Geometry Olympiad, 9
Two circles $\omega_1$ and $\omega_2$ touching externally at point $L$ are inscribed into angle $BAC$. Circle $\omega_1$ touches ray $AB$ at point $E$, and circle $\omega_2$ touches ray $AC$ at point $M$. Line $EL$ meets $\omega_2$ for the second time at point $Q$. Prove that $MQ\parallel AL$.
2013 Chile TST Ibero, 1
Prove that the equation
\[
x^z + y^z = z^z
\]
has no solutions in postive integers.
2022 Durer Math Competition Finals, 4
$ABCD$ is a cyclic quadrilateral whose diagonals are perpendicular to each other. Let $O$ denote the centre of its circumcircle and $E$ the intersection of the diagonals. $J$ and $K$ denote the perpendicular projections of $E$ on the sides $AB$ and $BC$ . Let $F , G$ and $H$ be the midpoint line segments. Show that lines $GJ$ , $FB$ and $HK$ either pass through the same point or are parallel to each other.
2016 Middle European Mathematical Olympiad, 2
There are $n \ge 3$ positive integers written on a board. A [i]move[/i] consists of choosing three numbers $a, b, c$ written from the board such that there exists a non-degenerate non-equilateral triangle with sides $a, b, c$ and replacing those numbers with $a + b - c, b + c - a$ and $c + a - b$.
Prove that a sequence of moves cannot be infinite.
2023 South East Mathematical Olympiad, 1
The positive sequence $\{a_n\}$ satisfies:$a_1=1$ and $$a_n=2+\sqrt{a_{n-1}}-2 \sqrt{1+\sqrt{a_{n-1}}}(n\geq 2)$$
Let $S_n=\sum\limits_{k=1}^{n}{2^ka_k}$. Find the value of $S_{2023}$.
2001 Croatia Team Selection Test, 2
Circles $k_1$ and $k_2$ intersect at $P$ and $Q$, and $A$ and $B$ are the tangency points of their common tangent that is closer to $P$ (where $A$ is on $k_1$ and $B$ on $k_2$). The tangent to $k_1$ at $P$ intersects $k_2$ again at $C$. The lines $AP$ and $BC$ meet at $R$. Show that the lines $BP$ and $BC$ are tangent to the circumcircle of triangle $PQR$.
2013 India IMO Training Camp, 2
Let $ABCD$ by a cyclic quadrilateral with circumcenter $O$. Let $P$ be the point of intersection of the diagonals $AC$ and $BD$, and $K, L, M, N$ the circumcenters of triangles $AOP, BOP$, $COP, DOP$, respectively. Prove that $KL = MN$.
2008 Junior Balkan Team Selection Tests - Moldova, 12
Natural nonzero numder, which consists of $ m$ digits, is called hiperprime, if its any segment, which consists $ 1,2,...,m$ digits is prime (for example $ 53$ is hiperprime, because numbers $ 53,3,5$ are prime). Find all hiperprime numbers.
2013 Purple Comet Problems, 20
Let $z$ be a complex number satisfying $(z+\tfrac{1}{z})(z+\tfrac{1}{z}+1)=1$. Evaluate $(3z^{100}+\tfrac{2}{z^{100}}+1)(z^{100}+\tfrac{2}{z^{100}}+3)$.
2024 Thailand October Camp, 1
Professor Oak is feeding his $100$ Pokémon. Each Pokémon has a bowl whose capacity is a positive real number of kilograms. These capacities are known to Professor Oak. The total capacity of all the bowls is $100$ kilograms. Professor Oak distributes $100$ kilograms of food in such a way that each Pokémon receives a non-negative integer number of kilograms of food (which may be larger than the capacity of the bowl). The [i]dissatisfaction level[/i] of a Pokémon who received $N$ kilograms of food and whose bowl has a capacity of $C$ kilograms is equal to $\lvert N-C\rvert$.
Find the smallest real number $D$ such that, regardless of the capacities of the bowls, Professor Oak can distribute food in a way that the sum of the dissatisfaction levels over all the $100$ Pokémon is at most $D$.
[i]Oleksii Masalitin, Ukraine[/i]
1971 Putnam, B1
Let $S$ be a set and let $\circ$ be a binary operation on $S$ satisfying two laws
$$x\circ x=x \text{ for all } x \text{ in } S, \text{ and}$$
$$(x \circ y) \circ z= (y\circ z) \circ x \text{ for all } x,y,z \text{ in } S.$$
Show that $\circ$ is associative and commutative.
2015 AMC 12/AHSME, 21
Cozy the Cat and Dash the Dog are going up a staircase with a certain number of steps. However, instead of walking up the steps one at a time, both Cozy and Dash jump. Cozy goes two steps up with each jump (though if necessary, he will just jump the last step). Dash goes five steps up with each jump (though if necessary, he will just jump the last steps if there are fewer than 5 steps left). Suppose the Dash takes 19 fewer jumps than Cozy to reach the top of the staircase. Let $s$ denote the sum of all possible numbers of steps this staircase can have. What is the sum of the digits of $s$?
$\textbf{(A) } 9
\qquad\textbf{(B) } 11
\qquad\textbf{(C) } 12
\qquad\textbf{(D) } 13
\qquad\textbf{(E) } 15
$
1989 IMO Longlists, 9
Do there exist two sequences of real numbers $ \{a_i\}, \{b_i\},$ $ i \in \mathbb{N},$ satisfying the following conditions:
\[ \frac{3 \cdot \pi}{2} \leq a_i \leq b_i\]
and
\[ \cos(a_i x) \minus{} \cos(b_i x) \geq \minus{} \frac{1}{i}\]
$ \forall i \in \mathbb{N}$ and all $ x,$ with $ 0 < x < 1?$
2014 India Regional Mathematical Olympiad, 4
Is it possible to write the numbers $17$,$18$,$19$,...$32$ in a $4*4$ grid of unit squares with one number in each square such that if the grid is divided into four $2*2$ subgrids of unit squares ,then the product of numbers in each of the subgrids divisible by $16$?
2014 Harvard-MIT Mathematics Tournament, 1
[4] Compute the prime factorisation of $159999$.
2022 Indonesia TST, N
Given positive odd integers $m$ and $n$ where the set of all prime factors of $m$ is the same as the set of all prime factors $n$, and $n \vert m$. Let $a$ be an arbitrary integer which is relatively prime to $m$ and $n$. Prove that:
\[ o_m(a) = o_n(a) \times \frac{m}{\gcd(m, a^{o_n(a)}-1)} \] where $o_k(a)$ denotes the smallest positive integer such that $a^{o_k(a)} \equiv 1$ (mod $k$) holds for some natural number $k > 1$.
2020 China Northern MO, BP4
In $\triangle ABC$, $\angle BAC = 60^{\circ}$, point $D$ lies on side $BC$, $O_1$ and $O_2$ are the centers of the circumcircles of $\triangle ABD$ and $\triangle ACD$, respectively. Lines $BO_1$ and $CO_2$ intersect at point $P$. If $I$ is the incenter of $\triangle ABC$ and $H$ is the orthocenter of $\triangle PBC$, then prove that the four points $B,C,I,H$ are on the same circle.