Found problems: 85335
2018 IMO Shortlist, A3
Given any set $S$ of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
2022 Oral Moscow Geometry Olympiad, 5
Circle $\omega$ is tangent to the interior of the circle $\Omega$ at the point C. Chord $AB$ of circle $\Omega$ is tangent to $\omega$. Chords $CF$ and $BG$ of circle $\Omega$ intersect at point $E$ lying on $\omega$. Prove that the circumcircle of triangle $CGE$ is tangent to straight line $AF$.
(I. Kukharchuk)
2012 BMT Spring, 7
Let $ a $ , $ b $ , $ c $ , $ d $ , $ (a + b + c + 18 + d) $ , $ (a + b + c + 18 - d) $ , $ (b + c) $ , and $ (c + d) $ be distinct prime numbers such that $ a + b + c = 2010 $, $ a $, $ b $, $ c $, $ d \neq 3 $ , and $ d \le 50 $. Find the maximum value of the difference between two of these prime numbers.
2008 Sharygin Geometry Olympiad, 4
(A.Zaslavsky) Given three points $ C_0$, $ C_1$, $ C_2$ on the line $ l$. Find the locus of incenters of triangles $ ABC$ such that points $ A$, $ B$ lie on $ l$ and the feet of the median, the bisector and the altitude from $ C$ coincide with $ C_0$, $ C_1$, $ C_2$.
1999 Rioplatense Mathematical Olympiad, Level 3, 4
Prove the following inequality:
$$ \frac{1}{\sqrt[3]{1^2}+\sqrt[3]{1 \cdot 2}+\sqrt[3]{2^2} }+\frac{1}{\sqrt[3]{3^2}+\sqrt[3]{3 \cdot 4}+\sqrt[3]{4^2} }+...+ \frac{1}{\sqrt[3]{999^2}+\sqrt[3]{999 \cdot 1000}+\sqrt[3]{1000^2} }> \frac{9}{2}$$
(The member on the left has 500 fractions.)
Indonesia MO Shortlist - geometry, g8
Given an acute triangle $ABC$ and points $D$, $E$, $F$ on sides $BC$, $CA$ and $AB$, respectively. If the lines $DA$, $EB$ and $FC$ are the angle bisectors of triangle $DEF$, prove that the three lines are the altitudes of triangle $ABC$.
2009 National Olympiad First Round, 15
For real numbers, if $ |x| \plus{} |y| \equal{} 13$, then $ x^2 \plus{} 7x \minus{} 3y \plus{} y^2$ cannot be
$\textbf{(A)}\ 208 \qquad\textbf{(B)}\ 15\sqrt {2} \qquad\textbf{(C)}\ \frac {35}{2} \qquad\textbf{(D)}\ 37 \qquad\textbf{(E)}\ \text{None}$
2020 Bangladesh Mathematical Olympiad National, Problem 9
Bristy wants to build a special set $A$. She starts with $A=\{0, 42\}$. At any step, she can add an integer $x$ to the set $A$ if it is a root of a polynomial which uses the already existing integers in $A$ as coefficients. She keeps doing this, adding more and more numbers to $A$. After she eventually runs out of numbers to add to $A$, how many numbers will be in $A$?
2022 Philippine MO, 2
The PMO Magician has a special party game. There are $n$ chairs, labelled $1$ to $n$. There are $n$ sheets of paper, labelled $1$ to $n$.
[list]
[*] On each chair, she attaches exactly one sheet whose number does not match the number on the chair.
[*] She then asks $n$ party guests to sit on the chairs so that each chair has exactly one occupant.
[*] Whenever she claps her hands, each guest looks at the number on the sheet attached to their current chair, and moves to the chair labelled with that number.
[/list]
Show that if $1 < m \leq n$, where $m$ is not a prime power, it is always possible for the PMO Magician to choose which sheet to attach to each chair so that everyone returns to their original seats after exactly $m$ claps.
2024 China Team Selection Test, 18
Let $m,n\in\mathbb Z_{\ge 0},$ $a_0,a_1,\ldots ,a_m,b_0,b_1,\ldots ,b_n\in\mathbb R_{\ge 0}$ For any integer $0\le k\le m+n,$ define $c_k:=\max_{i+j=k}a_ib_j.$ Proof
$$\frac 1{m+n+1}\sum_{k=0}^{m+n}c_k\ge\frac 1{(m+1)(n+1)}\sum_{i=0}^{m}a_i\sum_{j=0}^{n}b_j.$$
[i]Created by Yinghua Ai[/i]
2015 Iran Geometry Olympiad, 2
let $ ABC $ an equilateral triangle with circum circle $ w $
let $ P $ a point on arc $ BC $ ( point $ A $ is on the other side )
pass a tangent line $ d $ through point $ P $ such that $ P \cap AB = F $ and $ AC \cap d = L $
let $ O $ the center of the circle $ w $
prove that $ \angle LOF > 90^{0} $
2003 AIME Problems, 11
Triangle $ABC$ is a right triangle with $AC=7,$ $BC=24,$ and right angle at $C.$ Point $M$ is the midpoint of $AB,$ and $D$ is on the same side of line $AB$ as $C$ so that $AD=BD=15.$ Given that the area of triangle $CDM$ may be expressed as $\frac{m\sqrt{n}}{p},$ where $m,$ $n,$ and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime, find $m+n+p.$
1984 Spain Mathematical Olympiad, 4
Evaluate $\lim_{n\to \infty} cos\frac{x}{2}cos\frac{x}{2^2} cos\frac{x}{2^3}...cos\frac{x}{2^n}$
2009 Brazil Team Selection Test, 4
Let $ S \equal{} \{x_1, x_2, \ldots, x_{k \plus{} l}\}$ be a $ (k \plus{} l)$-element set of real numbers contained in the interval $ [0, 1]$; $ k$ and $ l$ are positive integers. A $ k$-element subset $ A\subset S$ is called [i]nice[/i] if
\[ \left |\frac {1}{k}\sum_{x_i\in A} x_i \minus{} \frac {1}{l}\sum_{x_j\in S\setminus A} x_j\right |\le \frac {k \plus{} l}{2kl}\]
Prove that the number of nice subsets is at least $ \dfrac{2}{k \plus{} l}\dbinom{k \plus{} l}{k}$.
[i]Proposed by Andrey Badzyan, Russia[/i]
1966 IMO Shortlist, 52
A figure with area $1$ is cut out of paper. We divide this figure into $10$ parts and color them in $10$ different colors. Now, we turn around the piece of paper, divide the same figure on the other side of the paper in $10$ parts again (in some different way). Show that we can color these new parts in the same $10$ colors again (hereby, different parts should have different colors) such that the sum of the areas of all parts of the figure colored with the same color on both sides is $\geq \frac{1}{10}.$
2016 Math Prize for Girls Problems, 1
Let $T$ be a triangle with side lengths 3, 4, and 5. If $P$ is a point in or on $T$, what is the greatest possible sum of the distances from $P$ to each of the three sides of $T$?
1972 IMO Longlists, 32
If $n_1, n_2, \cdots, n_k$ are natural numbers and $n_1+n_2+\cdots+n_k = n$,
show that
\[max(n_1n_2\cdots n_k)=(t + 1)^rt^{k-r},\]
where $t =\left[\frac{n}{k}\right]$ and $r$ is the remainder of $n$ upon division by $k$; i.e., $n = tk + r, 0 \le r \le k- 1$.
2011 Paraguay Mathematical Olympiad, 2
In a triangle $ABC$, let $D$ and $E$ be the midpoints of $AC$ and $BC$ respectively. The distance from the midpoint of $BD$ to the midpoint of $AE$ is $4.5$. What is the length of side $AB$?
2022 Germany Team Selection Test, 1
Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$
2022 AMC 8 -, 10
One sunny day, Ling decided to take a hike in the mountains. She left her house at $8 \, \textsc{am}$, drove at a constant speed of $45$ miles per hour, and arrived at the hiking trail at $10 \, \textsc{am}$. After hiking for $3$ hours, Ling drove home at a constant speed of $60$ miles per hour. Which of the following graphs best illustrates the distance between Ling’s car and her house over the course of her trip?
[asy]
unitsize(12);
usepackage("mathptmx");
defaultpen(fontsize(8)+linewidth(.7));
int mod12(int i) {if (i<13) {return i;} else {return i-12;}}
void drawgraph(pair sh,string lab) {
for (int i=0;i<11;++i) {
for (int j=0;j<6;++j) {
draw(shift(sh+(i,j))*unitsquare,mediumgray);
}
}
draw(shift(sh)*((-1,0)--(11,0)),EndArrow(angle=20,size=8));
draw(shift(sh)*((0,-1)--(0,6)),EndArrow(angle=20,size=8));
for (int i=1;i<10;++i) {
draw(shift(sh)*((i,-.2)--(i,.2)));
}
label("8\tiny{\textsc{am}}",sh+(1,-.2),S);
for (int i=2;i<9;++i) {
label(string(mod12(i+7)),sh+(i,-.2),S);
}
label("4\tiny{\textsc{pm}}",sh+(9,-.2),S);
for (int i=1;i<6;++i) {
label(string(30*i),sh+(0,i),2*W);
}
draw(rotate(90)*"Distance (miles)",sh+(-2.1,3),fontsize(10));
label("$\textbf{("+lab+")}$",sh+(-2.1,6.8),fontsize(10));
}
drawgraph((0,0),"A");
drawgraph((15,0),"B");
drawgraph((0,-10),"C");
drawgraph((15,-10),"D");
drawgraph((0,-20),"E");
dotfactor=6;
draw((1,0)--(3,3)--(6,3)--(8,0),linewidth(.9));
dot((1,0)^^(3,3)^^(6,3)^^(8,0));
pair sh = (15,0);
draw(shift(sh)*((1,0)--(3,1.5)--(6,1.5)--(8,0)),linewidth(.9));
dot(sh+(1,0)^^sh+(3,1.5)^^sh+(6,1.5)^^sh+(8,0));
pair sh = (0,-10);
draw(shift(sh)*((1,0)--(3,1.5)--(6,1.5)--(7.5,0)),linewidth(.9));
dot(sh+(1,0)^^sh+(3,1.5)^^sh+(6,1.5)^^sh+(7.5,0));
pair sh = (15,-10);
draw(shift(sh)*((1,0)--(3,4)--(6,4)--(9.3,0)),linewidth(.9));
dot(sh+(1,0)^^sh+(3,4)^^sh+(6,4)^^sh+(9.3,0));
pair sh = (0,-20);
draw(shift(sh)*((1,0)--(3,3)--(6,3)--(7.5,0)),linewidth(.9));
dot(sh+(1,0)^^sh+(3,3)^^sh+(6,3)^^sh+(7.5,0));
[/asy]
2010 Contests, 3
Let $N$ be the number of ordered 5-tuples $(a_{1}, a_{2}, a_{3}, a_{4}, a_{5})$ of positive integers satisfying
$\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\frac{1}{a_{5}}=1$
Is $N$ even or odd?
Oh and [b]HINTS ONLY[/b], please do not give full solutions. Thanks.
2018 Moldova Team Selection Test, 11
Let $\Omega $ be the circumcincle of the quadrilateral $ABCD $ , and $E $ the intersection point of the diagonals $AC $ and $BD $ . A line passing through $E $ intersects $AB $ and $BC$ in points $P $ and $Q $ . A circle ,that is passing through point $D $ , is tangent to the line $PQ $ in point $E $ and intersects $\Omega$ in point $R $ , different from $D $ . Prove that the points $B,P,Q,$ and $R $ are concyclic .
2020 Azerbaijan IMO TST, 3
Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that
\[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll}
0, & \text { if } n \text { is even; } \\
1, & \text { if } n \text { is odd. }
\end{array}\right.\]
2017 CMIMC Algebra, 2
For nonzero real numbers $x$ and $y$, define $x\circ y = \tfrac{xy}{x+y}$. Compute \[2^1\circ \left(2^2\circ \left(2^3\circ\cdots\circ\left(2^{2016}\circ 2^{2017}\right)\right)\right).\]
2014 Contests, 3
Let $B$ and $C$ be two fixed points on a circle centered at $O$ that are not diametrically opposed. Let $A$ be a variable point on the circle distinct from $B$ and $C$ and not belonging to the perpendicular bisector of $BC$. Let $H$ be the orthocenter of $\triangle ABC$, and $M$ and $N$ be the midpoints of the segments $BC$ and $AH$, respectively. The line $AM$ intersects the circle again at $D$, and finally, $NM$ and $OD$ intersect at $P$. Determine the locus of points $P$ as $A$ moves around the circle.