This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2007 May Olympiad, 5

You have a paper pentagon, $ABCDE$, such that $AB = BC = 3$ cm, $CD = DE= 5$ cm, $EA = 4$ cm, $\angle ABC = 100^o$ ,$ \angle CDE = 80^o$. You have to divide the pentagon into four triangles, by three straight cuts, so that with the four triangles assemble a rectangle, without gaps or overlays. (The triangles can be rotated and / or turned around.)

2011 Princeton University Math Competition, A3

Tags: geometry
Let $PQ$ and $PR$ be tangents to a circle $\omega$ with diameter $AB$ so that $A, Q, R, B$ lie on $\omega$ in that order. Let $H$ be the projection of $P$ onto $AB$ and let $AR$ and $PH$ intersect at $S$. If $\angle QPH = 30^{\circ}$ and $\angle HPR = 20^\circ$, find $\angle ASQ$ in degrees.

1984 Spain Mathematical Olympiad, 3

If $p$ and $q$ are positive numbers with $p+q = 1$, knowing that any real numbers $x,y$ satisfy $(x-y)^2 \ge 0$, show that $\frac{x+y}{2} \ge \sqrt{xy}$, $\frac{x^2+y^2}{2} \ge \big(\frac{x+y}{2}\big)^2$, $\big(p+\frac{1}{p}\big)^2+\big(q+\frac{1}{q}\big)^2 \ge \frac{25}{2}$

1999 Romania National Olympiad, 3

Let $ABCD$ be a convex quadrilateral with $\angle BAC = \angle CAD$, $\angle ABC =\angle ACD$, $(AD \cap (BC =\{E\}$, $(AB \cap (DC = \{F\}$. Prove that: a) $AB\cdot DE = BC \cdot CE$ b) $AC^2 < \frac12 (AD \cdot AF + AB \cdot AE).$

Kettering MO, 2003

[b]p1.[/b] How many real solutions does the following system of equations have? Justify your answer. $$x + y = 3$$ $$3xy -z^2 = 9$$ [b]p2.[/b] After the first year the bank account of Mr. Money decreased by $25\%$, during the second year it increased by $20\%$, during the third year it decreased by $10\%$, and during the fourth year it increased by $20\%$. Does the account of Mr. Money increase or decrease during these four years and how much? [b]p3.[/b] Two circles are internally tangent. A line passing through the center of the larger circle intersects it at the points $A$ and $D$. The same line intersects the smaller circle at the points $B$ and $C$. Given that $|AB| : |BC| : |CD| = 3 : 7 : 2$, find the ratio of the radiuses of the circles. [b]p4.[/b] Find all integer solutions of the equation $\frac{1}{x}+\frac{1}{y}=\frac{1}{19}$ [b]p5.[/b] Is it possible to arrange the numbers $1, 2, . . . , 12$ along the circle so that the absolute value of the difference between any two numbers standing next to each other would be either $3$, or $4$, or $5$? Prove your answer. [b]p6.[/b] Nine rectangles of the area $1$ sq. mile are located inside the large rectangle of the area $5$ sq. miles. Prove that at least two of the rectangles (internal rectangles of area $1$ sq. mile) overlap with an overlapping area greater than or equal to $\frac19$ sq. mile PS. You should use hide for answers.

1989 Putnam, A4

Is there a gambling game with an honest coin for two players, in which the probability of one of them winning is $\frac{1}{{\pi}^e}$.

2021 Taiwan Mathematics Olympiad, 5.

Let $n$ be a given positive integer. Alice and Bob play a game. In the beginning, Alice determines an integer polynomial $P(x)$ with degree no more than $n$. Bob doesn’t know $P(x)$, and his goal is to determine whether there exists an integer $k$ such that no integer roots of $P(x) = k$ exist. In each round, Bob can choose a constant $c$. Alice will tell Bob an integer $k$, representing the number of integer $t$ such that $P(t) = c$. Bob needs to pay one dollar for each round. Find the minimum cost such that Bob can guarantee to reach his goal. [i]Proposed by ltf0501[/i]

1969 IMO Longlists, 9

$(BUL 3)$ One hundred convex polygons are placed on a square with edge of length $38 cm.$ The area of each of the polygons is smaller than $\pi cm^2,$ and the perimeter of each of the polygons is smaller than $2\pi cm.$ Prove that there exists a disk with radius $1$ in the square that does not intersect any of the polygons.

1993 National High School Mathematics League, 8

Tags:
Real number $x,y$ satisfy that $4x^2-5xy+4y^2=5,S=x^2+y^2$, then $\frac{1}{S_\text{max}}+\frac{1}{S_\text{min}}=$________.

2014 Baltic Way, 3

Tags: inequalities
Positive real numbers $a, b, c$ satisfy $\frac{1}{a} +\frac{1}{b} +\frac{1}{c} = 3.$ Prove the inequality \[\frac{1}{\sqrt{a^3+ b}}+\frac{1}{\sqrt{b^3 + c}}+\frac{1}{\sqrt{c^3 + a}}\leq \frac{3}{\sqrt{2}}.\]

2012 Olympic Revenge, 5

Tags: inequalities
Let $x_1,x_2,\ldots ,x_n$ positive real numbers. Prove that: \[\sum_{cyc} \frac{1}{x_i^3+x_{i-1}x_ix_{i+1}} \le \sum_{cyc} \frac{1}{x_ix_{i+1}(x_i+x_{i+1})}\]

2019 Czech-Polish-Slovak Junior Match, 3

Determine all positive integers $n$ such that it is possible to fill the $n \times n$ table with numbers $1, 2$ and $-3$ so that the sum of the numbers in each row and each column is $0$.

1948 Putnam, B6

Answer wither (i) or (ii): (i) Let $V, V_1 , V_2$ and $V_3$ denote four vertices of a cube such that $V_1 , V_2 , V_3 $ are adjacent to $V.$ Project the cube orthogonally on a plane of which the points are marked with complex numbers. Let the projection of $V$ fall in the origin and the projections of $V_1 , V_2 , V_3 $ in points marked with the complex numbers $z_1 , z_2 , z_3$, respectively. Show that $z_{1}^{2} +z_{2}^{2} +z_{3}^{2}=0.$ (ii) Let $(a_{ij})$ be a matrix such that $$|a_{ii}| > |a_{i1}| + |a_{i2}|+\ldots +|a_{i i-1}|+ |a_{i i+1}| +\ldots +|a_{in}|$$ for all $i.$ Show that the determinant is not equal to $0.$

2010 China Team Selection Test, 2

Let $ABCD$ be a convex quadrilateral. Assume line $AB$ and $CD$ intersect at $E$, and $B$ lies between $A$ and $E$. Assume line $AD$ and $BC$ intersect at $F$, and $D$ lies between $A$ and $F$. Assume the circumcircles of $\triangle BEC$ and $\triangle CFD$ intersect at $C$ and $P$. Prove that $\angle BAP=\angle CAD$ if and only if $BD\parallel EF$.

2000 Romania National Olympiad, 4

Let $ f $ be a polynom of degree $ 3 $ and having rational coefficients. Prove that, if there exist two distinct nonzero rational numbers $ a,b $ and two roots $ x,y $ of $ f $ such that $ ax+by $ is rational, then all roots of $ f $ are rational.

2016 Indonesia MO, 3

There are $5$ boxes arranged in a circle. At first, there is one a box containing one ball, while the other boxes are empty. At each step, we can do one of the following two operations: i. select one box that is not empty, remove one ball from the box and add one ball into both boxes next to the box, ii. select an empty box next to a non-empty box, from the box the non-empty one moves one ball to the empty box. Is it possible, that after a few steps, obtained conditions where each box contains exactly $17^{5^{2016}}$ balls?

2006 Germany Team Selection Test, 2

Given a triangle $ABC$ satisfying $AC+BC=3\cdot AB$. The incircle of triangle $ABC$ has center $I$ and touches the sides $BC$ and $CA$ at the points $D$ and $E$, respectively. Let $K$ and $L$ be the reflections of the points $D$ and $E$ with respect to $I$. Prove that the points $A$, $B$, $K$, $L$ lie on one circle. [i]Proposed by Dimitris Kontogiannis, Greece[/i]

2025 India National Olympiad, P5

Greedy goblin Griphook has a regular $2000$-gon, whose every vertex has a single coin. In a move, he chooses a vertex, removes one coin each from the two adjacent vertices, and adds one coin to the chosen vertex, keeping the remaining coin for himself. He can only make such a move if both adjacent vertices have at least one coin. Griphook stops only when he cannot make any more moves. What is the maximum and minimum number of coins he could have collected? [i]Proposed by Pranjal Srivastava and Rohan Goyal[/i]

1973 AMC 12/AHSME, 18

If $ p \geq 5$ is a prime number, then $ 24$ divides $ p^2 \minus{} 1$ without remainder $ \textbf{(A)}\ \text{never} \qquad \textbf{(B)}\ \text{sometimes only} \qquad \textbf{(C)}\ \text{always} \qquad$ $ \textbf{(D)}\ \text{only if } p \equal{}5 \qquad \textbf{(E)}\ \text{none of these}$

2005 Unirea, 3

$a_1=b_1=1$ $a_{n+1}=b_n+\frac{1}{n}$ $b_{n+1}=a_n-\frac{1}{n}$ Prove that $a_n$, $b_n$ is not convergent, but $a_nb_n$ is convergent Laurentin Panaitopol

2024 Sharygin Geometry Olympiad, 1

Bisectors $AI$ and $CI$ meet the circumcircle of triangle $ABC$ at points $A_1, C_1$ respectively. The circumcircle of triangle $AIC_1$ meets $AB$ at point $C_0$; point $A_0$ is defined similarly. Prove that $A_0, A_1, C_0, C_1$ are collinear.

2022 IMC, 6

Let $p \geq 3$ be a prime number. Prove that there is a permutation $(x_1,\ldots, x_{p-1})$ of $(1,2,\ldots,p-1)$ such that $x_1x_2 + x_2x_3 + \cdots + x_{p-2}x_{p-1} \equiv 2 \pmod p$.

2008 AMC 10, 4

Tags:
Suppose that $ \frac{2}{3}$ of $ 10$ bananas are worth as much as $ 8$ oranges. How many oranges are worth as much is $ \frac{1}{2}$ of $ 5$ bananas? $ \textbf{(A)}\ 2 \qquad \textbf{(B)}\ \frac{5}{2} \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ \frac{7}{2} \qquad \textbf{(E)}\ 4$

2020 Princeton University Math Competition, A8

Tags: algebra
Let $a_n$ be the number of unordered sets of three distinct bijections $f, g, h : \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ such that the composition of any two of the bijections equals the third. What is the largest value in the sequence $a_1, a_2, ...$ which is less than $2021$?

2001 Poland - Second Round, 3

Let $n\ge 3$ be a positive integer. Prove that a polynomial of the form \[x^n+a_{n-3}x^{n-3}+a_{n-4}x^{n-4}+\ldots +a_1x+a_0,\] where at least one of the real coefficients $a_0,a_1,\ldots ,a_{n-3}$ is nonzero, cannot have all real roots.