This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

LMT Speed Rounds, 2023 S

[b]p1.[/b] Evaluate $(2-0)^2 \cdot 3+ \frac{20}{2+3}$ . [b]p2.[/b] Let $x = 11 \cdot 99$ and $y = 9 \cdot 101$. Find the sumof the digits of $x \cdot y$. [b]p3.[/b] A rectangle is cut into two pieces. The ratio between the areas of the two pieces is$ 3 : 1$ and the positive difference between those areas is $20$. What’s the area of the rectangle? [b]p4.[/b] Edgeworth is scared of elevators. He is currently on floor $50$ of a building, and he wants to go down to floor $1$. Edgeworth can go down at most $4$ floors each time he uses the elevator. What’s the minimum number of times he needs to use the elevator to get to floor $1$? [b]p5.[/b] There are $20$ people at a party. Fifteen of those people are normal and $5$ are crazy. A normal person will shake hands once with every other normal person, while a crazy person will shake hands twice with every other crazy person. How many total handshakes occur at the party? [b]p6.[/b] Wam and Sang are chewing gum. Gum comes in packages, each package consisting of $14$ sticks of gum. Wam eats $6$ packs and $9$ individual sticks of gum. Sang wants to eat twice as much gum as Wam. How many packs of gum must Sang buy? [b]p7.[/b] At Lakeside Health School (LHS), $40\%$ of students are male and $60\%$ of the students are female. If half of the students at the school take biology, and the same number ofmale and female students take biology, to the nearest percent, what percent of female students take biology? [b]p8.[/b] Evin is bringing diluted raspberry iced tea to the annual LexingtonMath Team party. He has a cup with $10$ mL of iced tea and a $2000$ mL cup of water with $10\%$ raspberry iced tea. If he fills up the cup with $20$ more mL of $10\%$ raspberry iced tea water, what percent of the solution will be iced tea? [b]p9.[/b] Tree $1$ starts at height $220$ m and grows continuously at $3$ m per year. Tree $2$ starts at height $20$ m and grows at $5$ m during the first year, $7$ m per during the second year, $9$ m during the third year, and in general $(3+2n)$ m in the nth year. After which year is Tree $2$ taller than Tree $1$? [b]p10.[/b] Leo and Chris are playing a game in which Chris flips a coin. The coin lands on heads with probability $\frac{499}{999}$ , tails with probability $\frac{499}{999}$ , and it lands on its side with probability $\frac{1}{999}$ . For each flip of the coin, Leo agrees to give Chris $4$ dollars if it lands on heads, nothing if it lands on tails, and $2$ dollars if it lands on its side. What’s the expected value of the number of dollars Chris gets after flipping the coin $17$ times? [b]p11.[/b] Ephram has a pile of balls, which he tries to divide into piles. If he divides the balls into piles of $7$, there are $5$ balls that don’t get divided into any pile. If he divides the balls into piles of $11$, there are $9$ balls that aren’t in any pile. If he divides the balls into piles of $13$, there are $11$ balls that aren’t in any pile. What is the minimumnumber of balls Ephram has? [b]p12.[/b] Let $\vartriangle ABC$ be a triangle such that $AB = 3$, $BC = 4$, and $C A = 5$. Let $F$ be the midpoint of $AB$. Let $E$ be the point on $AC$ such that $EF \parallel BC$. Let CF and $BE$ intersect at $D$. Find $AD$. [b]p13.[/b] Compute the sum of all even positive integers $n \le 1000$ such that: $$lcm(1,2, 3, ..., (n -1)) \ne lcm(1,2, 3,, ...,n)$$. [b]p14.[/b] Find the sum of all palindromes with $6$ digits in binary, including those written with leading zeroes. [b]p15.[/b] What is the side length of the smallest square that can entirely contain $3$ non-overlapping unit circles? [b]p16.[/b] Find the sum of the digits in the base $7$ representation of $6250000$. Express your answer in base $10$. [b]p17.[/b] A number $n$ is called sus if $n^4$ is one more than a multiple of $59$. Compute the largest sus number less than $2023$. [b]p18.[/b] Michael chooses real numbers $a$ and $b$ independently and randomly from $(0, 1)$. Given that $a$ and $b$ differ by at most $\frac14$, what is the probability $a$ and $b$ are both greater than $\frac12$ ? [b]p19.[/b] In quadrilateral $ABCD$, $AB = 7$ and $DA = 5$, $BC =CD$, $\angle BAD = 135^o$ and $\angle BCD = 45^o$. Find the area of $ABCD$. [b]p20.[/b] Find the value of $$\sum_{i |210} \sum_{j |i} \left \lfloor \frac{i +1}{j} \right \rfloor$$ [b]p21.[/b] Let $a_n$ be the number of words of length $n$ with letters $\{A,B,C,D\}$ that contain an odd number of $A$s. Evaluate $a_6$. [b]p22.[/b] Detective Hooa is investigating a case where a criminal stole someone’s pizza. There are $69$ people involved in the case, among whom one is the criminal and another is a witness of the crime. Every day, Hooa is allowed to invite any of the people involved in the case to his rather large house for questioning. If on some given day, the witness is present and the criminal is not, the witness will reveal who the criminal is. What is the minimum number of days of questioning required such that Hooa is guaranteed to learn who the criminal is? [b]p23.[/b] Find $$\sum^{\infty}_{n=2} \frac{2n +10}{n^3 +4n^2 +n -6}.$$ [b]p24.[/b] Let $\vartriangle ABC$ be a triangle with circumcircle $\omega$ such that $AB = 1$, $\angle B = 75^o$, and $BC =\sqrt2$. Let lines $\ell_1$ and $\ell_2$ be tangent to $\omega$ at $A$ and $C$ respectively. Let $D$ be the intersection of $\ell_1$ and $\ell_2$. Find $\angle ABD$ (in degrees). [b]p25.[/b] Find the sum of the prime factors of $14^6 +27$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 National Olympiad First Round, 8

Which of the following polynomials does not divide $x^{60} - 1$? $ \textbf{a)}\ x^2+x+1 \qquad\textbf{b)}\ x^4-1 \qquad\textbf{c)}\ x^5-1 \qquad\textbf{d)}\ x^{15}-1 \qquad\textbf{e)}\ \text{None of above} $

2010 ELMO Shortlist, 4

Let $-2 < x_1 < 2$ be a real number and define $x_2, x_3, \ldots$ by $x_{n+1} = x_n^2-2$ for $n \geq 1$. Assume that no $x_n$ is $0$ and define a number $A$, $0 \leq A \leq 1$ in the following way: The $n^{\text{th}}$ digit after the decimal point in the binary representation of $A$ is a $0$ if $x_1x_2\cdots x_n$ is positive and $1$ otherwise. Prove that $A = \frac{1}{\pi}\cos^{-1}\left(\frac{x_1}{2}\right)$. [i]Evan O' Dorney.[/i]

2002 Denmark MO - Mohr Contest, 5

Homer Grog has written the numbers $1, 3, 4, 5, 7, 9, 11, 13, 15,17$, one number on each note. He arranges the bills in a circle and tries to get the largest sum $S$ of the numbers of three consecutive bills to be the least possible. What is the smallest value $S$ can assume?

2019-IMOC, A5

Find all functions $f : \mathbb N \mapsto \mathbb N$ such that the following identity $$f^{x+1}(y)+f^{y+1}(x)=2f(x+y)$$ holds for all $x,y \in \mathbb N$

1987 Swedish Mathematical Competition, 6

A baker with access to a number of different spices bakes ten cakes. He uses more than half of the different kinds of spices in each cake, but no two of the combinations of spices are exactly the same. Show that there exist three spices $a,b,c$ such that every cake contains at least one of these.

1978 IMO Longlists, 37

Tags: logarithm , algebra
Simplify \[\frac{1}{\log_a(abc)}+\frac{1}{\log_b(abc)}+\frac{1}{\log_c(abc)},\] where $a, b, c$ are positive real numbers.

2016 AMC 12/AHSME, 23

Tags:
What is the volume of the region in three-dimensional space defined by the inequalities $|x|+|y|+|z|\le1$ and $|x|+|y|+|z-1|\le1$? $\textbf{(A)}\ \frac{1}{6} \qquad \textbf{(B)}\ \frac{1}{3} \qquad \textbf{(C)}\ \frac{1}{2} \qquad \textbf{(D)}\ \frac{2}{3} \qquad \textbf{(E)}\ 1$

1958 Miklós Schweitzer, 10

Tags:
[b]10.[/b] Prove that the function $f(x)= \int_{-\infty}^{\infty} \left (\frac{\sin\theta}{\theta} \right )^{2k}\cos (2x\theta) d\theta$ where $k$ is a positive integer, satisfies the following conditions: [b](i)[/b] $f(x)=0$ if $\mid x \mid \geq k$ and $f(x) \geq 0$ elsewhere; [b](ii)[/b] in interval $(l,l+1)$ $(l= -k, -k+1, \dots , k-1)$ the function $f(x)$ is a polynomial of degree $2k-1$ at most. [b](R. 7)[/b]

2010 ELMO Shortlist, 7

Tags: algebra
Find the smallest real number $M$ with the following property: Given nine nonnegative real numbers with sum $1$, it is possible to arrange them in the cells of a $3 \times 3$ square so that the product of each row or column is at most $M$. [i]Evan O' Dorney.[/i]

2018 Kyiv Mathematical Festival, 5

A circle is divided by $2019$ points into equal parts. Two players delete these points in turns. A player loses, if after his turn it is possible to draw a diameter of the circle such that there are no undeleted points on one side of it. Which player has a winning strategy?

2022 Federal Competition For Advanced Students, P2, 5

Let $ABC$ be an isosceles triangle with base $AB$. We choose a point $P$ inside the triangle on altitude through $C$. The circle with diameter $CP$ intersects the straight line through $B$ and $P$ again at the point $D_P$ and the Straight through $A$ and $C$ one more time at point $E_P$. Prove that there is a point $F$ such that for any choice of $P$ the points $D_P , E_P$ and $F$ lie on a straight line. [i](Walther Janous)[/i]

2023 239 Open Mathematical Olympiad, 3

Let $n>1$ be a natural number and $x_k{}$ be the residue of $n^2$ modulo $\lfloor n^2/k\rfloor+1$ for all natural $k{}$. Compute the sum \[\bigg\lfloor\frac{x_2}{1}\bigg\rfloor+\bigg\lfloor\frac{x_3}{2}\bigg\rfloor+\cdots+\left\lfloor\frac{x_n}{n-1}\right\rfloor.\]

2015 Romania National Olympiad, 2

Let $a, b, c $ be distinct positive integers. a) Prove that $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$. b) if, moreover, $ab + ac + bc +3 = abc > 0,$ show that $$(a -1)(b -1)+(a -1)(c -1)+(b -1)(c -1) \ge 6.$$

1993 All-Russian Olympiad, 4

Thirty people sit at a round table. Each of them is either smart or dumb. Each of them is asked: "Is your neighbor to the right smart or dumb?" A smart person always answers correctly, while a dumb person can answer both correctly and incorrectly. It is known that the number of dumb people does not exceed $F$. What is the largest possible value of $F$ such that knowing what the answers of the people are, you can point at at least one person, knowing he is smart?

Estonia Open Senior - geometry, 2018.2.5

Let $A'$ be the result of reflection of vertex $A$ of triangle ABC through line $BC$ and let $B'$ be the result of reflection of vertex $B$ through line $AC$. Given that $\angle BA' C = \angle BB'C$, can the largest angle of triangle $ABC$ be located: a) At vertex $A$, b) At vertex $B$, c) At vertex $C$?

2011 May Olympiad, 1

The $4$ code words $$\square * \otimes \,\,\,\, \oplus \rhd \bullet \,\,\,\, * \square \bullet \,\,\,\, \otimes \oslash \oplus$$ they are in some order $$AMO \,\,\,\, SUR \,\,\,\, REO \,\,\,\, MAS$$ Decrypt $$\otimes \oslash \square * \oplus \rhd \square \bullet \otimes $$

2009 AMC 12/AHSME, 10

Tags:
A particular $ 12$-hour digital clock displays the hour and minute of a day. Unfortunately, whenever it is supposed to display a $ 1$, it mistakenly displays a $ 9$. For example, when it is 1:16 PM the clock incorrectly shows 9:96 PM. What fraction of the day will the clock show the correct time? $ \textbf{(A)}\ \frac12\qquad \textbf{(B)}\ \frac58\qquad \textbf{(C)}\ \frac34\qquad \textbf{(D)}\ \frac56\qquad \textbf{(E)}\ \frac {9}{10}$

2005 Tournament of Towns, 5

In a certain big city, all the streets go in one of two perpendicular directions. During a drive in the city, a car does not pass through any place twice, and returns to the parking place along a street from which it started. If it has made 100 left turns, how many right turns must it have made? [i](5 points)[/i]

2010 Iran MO (3rd Round), 4

a) prove that every discrete subgroup of $(\mathbb R^2,+)$ is in one of these forms: i-$\{0\}$. ii-$\{mv|m\in \mathbb Z\}$ for a vector $v$ in $\mathbb R^2$. iii-$\{mv+nw|m,n\in \mathbb Z\}$ for tho linearly independent vectors $v$ and $w$ in $\mathbb R^2$.(lattice $L$) b) prove that every finite group of symmetries that fixes the origin and the lattice $L$ is in one of these forms: $\mathcal C_i$ or $\mathcal D_i$ that $i=1,2,3,4,6$ ($\mathcal C_i$ is the cyclic group of order $i$ and $\mathcal D_i$ is the dyhedral group of order $i$).(20 points)

2008 Junior Balkan Team Selection Tests - Romania, 4

Let $ a,b$ be real nonzero numbers, such that number $ \lfloor an \plus{} b \rfloor$ is an even integer for every $ n \in \mathbb{N}$. Prove that $ a$ is an even integer.

2011 Denmark MO - Mohr Contest, 1

Georg writes the numbers from $1$ to $15$ on different pieces of paper. He attempts to sort these pieces of paper into two stacks so that none of the stacks contains two numbers whose sum is a square number.Prove that this is impossible. (The square numbers are the numbers $0 = 0^2$, $1 = 1^2$, $4 = 2^2$, $9 = 3^2$ etc.)

2024 UMD Math Competition Part II, #1

Find the largest positive integer $n$ satisfying the following: [center] "There are precisely $53$ integers in the list of integers $1, 2, \ldots, n$ that are either perfect squares, perfect cubes or both."[/center]

1994 Bulgaria National Olympiad, 4

Let $ABC$ be a triangle with incenter $I$, and let the tangency points of its incircle with its sides $AB$, $BC$, $CA$ be $C'$, $A'$ and $B'$ respectively. Prove that the circumcenters of $AIA'$, $BIB'$, and $CIC'$ are collinear.

2016 China Northern MO, 3

Prove: [b](a)[/b] There are infinitely many positive intengers $n$, satisfying: $$\gcd(n,[\sqrt2n])=1.$$ [b](b)[/b] There are infinitely many positive intengers $n$, satisfying: $$\gcd(n,[\sqrt2n])>1.$$