Found problems: 85335
1996 Tournament Of Towns, (488) 1
Prove that if $a, b$ and $c$ are positive numbers such that
$$a^2 + b^2 - ab = c^2,$$
then $(a - c)(b - c) < 0.$
(A Egorov)
2023 VIASM Summer Challenge, Problem 2
Find all positive integers $n$ such that there exists positive integers $a, b, m$ satisfying$$\left( a+b\sqrt{n}\right)^{2023}=\sqrt{m}+\sqrt{m+2022}.$$
2015 Tuymaada Olympiad, 2
We call number as funny if it divisible by sum its digits $+1$.(for example $ 1+2+1|12$ ,so $12$ is funny) What is maximum number of consecutive funny numbers ?
[i] O. Podlipski [/i]
2008 F = Ma, 20
The Young’s modulus, $E$, of a material measures how stiff it is; the larger the value of $E$, the more stiff the material. Consider a solid, rectangular steel beam which is anchored horizontally to the wall at one end and allowed to deflect under its own weight. The beam has length $L$, vertical thickness $h$, width $w$, mass density $\rho$, and Young’s modulus $E$; the acceleration due to gravity is $g$. What is the distance through which the other end moves? ([i]Hint: you are expected to solve this problem by eliminating implausible answers. All of the choices are dimensionally correct.[/i])
(a) $h \exp\left( \frac{\rho gL}{E} \right)$
(b) $2\frac{\rho gh^2}{E}$
(c) $\sqrt{2Lh}$
(d) $\frac{3}{2}\frac{\rho gL^4}{Eh^2}$
(e) $\sqrt{3}\frac{EL}{\rho gh}$
2003 Turkey Team Selection Test, 4
Find the least
a. positive real number
b. positive integer
$t$ such that the equation $(x^2+y^2)^2 + 2tx(x^2 + y^2) = t^2y^2$ has a solution where $x,y$ are positive integers.
2019 Romania National Olympiad, 2
Let $ABCD$ be a square and $E$ a point on the side $(CD)$. Squares $ENMA$ and $EBQP$ are constructed outside the triangle $ABE$. Prove that:
a) $ND = PC$
b) $ND\perp PC$.
2016 PUMaC Geometry A, 7
Let $ABCD$ be a cyclic quadrilateral with circumcircle $\omega$ and let $AC$ and $BD$ intersect at $X$. Let the line through $A$ parallel to $BD$ intersect line $CD$ at $E$ and $\omega$ at $Y \ne A$. If $AB = 10, AD = 24, XA = 17$, and $XB = 21$, then the area of $\vartriangle DEY$ can be written in simplest form as $\frac{m}{n}$ . Find $m + n$.
2020 Azerbaijan IZHO TST, 2
Consider two circles $k_1,k_2$ touching at point $T$.
A line touches $k_2$ at point $X$ and intersects $k_1$ at points $A,B$ where $B$ lies between $A$ and $X$.Let $S$ be the second intersection point of $k_1$ with $XT$. On the arc $\overarc{TS}$ not containing $A$ and $B$ , a point $C$ is choosen.
Let $CY$ be the tangent line to $k_2$ with $Y\in{k_2}$ , such that the segment $CY$ doesn't intersect the segment $ST$ .If $I=XY\cap{SC}$ , prove that :
$(a)$ the points $C,T,Y,I$ are concyclic.
$(b)$ $I$ is the $A-excenter$ of $\triangle ABC$
1971 Polish MO Finals, 3
A safe is protected with a number of locks. Eleven members of the committee have keys for some of the locks. What is the smallest number of locks necessary so that every six members of the committee can open the safe, but no five members can do it? How should the keys be distributed among the committee members if the number of locks is the smallest?
1963 All Russian Mathematical Olympiad, 031
Given two fixed points $A$ and $B$ .The point $M$ runs along the circumference containing $A$ and $B$. $K$ is the midpoint of the segment $[MB]$. $[KP]$ is a perpendicular to the line $(MA)$.
a) Prove that all the possible lines $(KP)$ pass through one point.
b) Find the set of all the possible points $P$.
2004 India IMO Training Camp, 3
Two runners start running along a circular track of unit length from the same starting point and int he same sense, with constant speeds $v_1$ and $v_2$ respectively, where $v_1$ and $v_2$ are two distinct relatively prime natural numbers. They continue running till they simultneously reach the starting point. Prove that
(a) at any given time $t$, at least one of the runners is at a distance not more than $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units from the starting point.
(b) there is a time $t$ such that both the runners are at least $\frac{[\frac{v_1 + v_2}{2}]}{v_1 + v_2}$ units away from the starting point. (All disstances are measured along the track). $[x]$ is the greatest integer function.
2005 MOP Homework, 3
Let $M$ be the midpoint of side $BC$ of triangle $ABC$ ($AB>AC$), and let $AL$ be the bisector of the angle $A$. The line passing through $M$ perpendicular to $AL$ intersects the side $AB$ at the point $D$. Prove that $AD+MC$ is equal to half the perimeter of triangle $ABC$.
2010 CHKMO, 3
Let $ \triangle ABC$ be a right-angled triangle with $ \angle C\equal{}90^\circ$. $ CD$ is the altitude from $ C$ to $ AB$, with $ D$ on $ AB$. $ \omega$ is the circumcircle of $ \triangle BCD$. $ \omega_1$ is a circle situated in $ \triangle ACD$, it is tangent to the segments $ AD$ and $ AC$ at $ M$ and $ N$ respectively, and is also tangent to circle $ \omega$.
(i) Show that $ BD\cdot CN\plus{}BC\cdot DM\equal{}CD\cdot BM$.
(ii) Show that $ BM\equal{}BC$.
2013 SDMO (Middle School), 5
We say that a positive integer $n$ is [i]nice[/i] if we can split the numbers $1,2,\ldots,n$ into three sets, so that the sum of the numbers in each set is the same. For example, the number $12$ is nice because we can divide the numbers $1,2,\ldots,12$ into the sets $\left\{1,2,4,5,6,8\right\}$, $\left\{7,9,10\right\}$, and $\left\{3,11,12\right\}$, and the sum of the numbers in each set is $26$.
Find all nice positive integers.
2018 Junior Balkan Team Selection Tests - Moldova, 2
Let $x$,$y$ be positive real numbers such that $\frac{1}{1+x+x^2}+\frac{1}{1+y+y^2}+\frac{1}{1+x+y}=1$.Prove that $xy=1.$
2011 All-Russian Olympiad Regional Round, 11.4
2011 storage buildings are connected by roads so that it is possible to reach any building from any other building, possibly using multiple roads. The buildings contain $x_1,\dots,x_{2011}$ kilogram of cement. In one move, it is possible to relocate any quantity of cement from one building to any other building that is connected to it.
The target is to have $y_1,\dots,y_{2011}$ redistributed across storage buildings and
\[x_1+x_2+\dots+x_{2011}=y_1+y_2+\dots+y_{2011}.\] What is the minimal number of moves that the redistribution can take regardless of values of $x_i$ and $y_i$ and of the road plan?
(Author: P. Karasev)
2002 Chile National Olympiad, 3
Given the line $AB$, let $M$ be a point on it. Towards the same side of the plane and with bases $AM$ and $MB$, squares $AMCD$ and $MBEF$ are constructed. Let $N$ be the point (different from $M$) where the circumcircles circumscribed to both squares intersect and let $N_1$ be the point where the lines $BC$ and $AF$ intersect. Prove that the points $N$ and $N_1$ coincide. Prove that as the point $M$ moves on the line $AB$, the line $MN$ moves always passing through a fixed point.
2017 Online Math Open Problems, 20
Let $p=2017$ be a prime. Suppose that the number of ways to place $p$ indistinguishable red marbles, $p$ indistinguishable green marbles, and $p$ indistinguishable blue marbles around a circle such that no red marble is next to a green marble and no blue marble is next to a blue marble is $N$. (Rotations and reflections of the same configuration are considered distinct.) Given that $N=p^m\cdot n$, where $m$ is a nonnegative integer and $n$ is not divisible by $p$, and $r$ is the remainder of $n$ when divided by $p$, compute $pm+r$.
[i]Proposed by Yannick Yao[/i]
2020 SIME, 12
Two sets $S_1$ and $S_2$, which are not necessarily distinct, are each selected randomly and independently from each other among the $512$ subsets of $S = \{1, 2, \ldots ,9\}$. Let $\sigma(X)$ denote the sum of the elements of set $X$. Note that $\sigma(\emptyset) = 0$ where $\emptyset$ denotes the empty set. If $S_1 \cup S_2$ stands for the union of $S_1$ and $S_2$, the probability that $\sigma(S_1 \cup S_2)$ is divisible by $3$ can be expressed as a common fraction of the form $\tfrac{m}{2^n}$ where $m$ is odd and $n$ is a positive integer. Find $m + n$.
2023 MMATHS, 3
There are $360$ permutations of the letters in $MMATHS.$ When ordered alphabetically, starting from $AHMMST,$ $MMATHS$ is in the $n$th permutation. What is $n$?
2010 Contests, 3
Consider triangle $ABC$ with $AB = AC$ and $\angle A = 40 ^o$. The points $S$ and $T$ are on the sides $AB$ and $BC$, respectively, so that $\angle BAT = \angle BCS= 10 ^o$. The lines $AT$ and $CS$ intersect at point $P$. Prove that $BT = 2PT$.
1973 Bulgaria National Olympiad, Problem 4
Find all functions $f(x)$ defined in the range $\left(-\frac\pi2,\frac\pi2\right)$ that are differentiable at $0$ and satisfy
$$f(x)=\frac12\left(1+\frac1{\cos x}\right)f\left(\frac x2\right)$$
for every $x$ in the range $\left(-\frac\pi2,\frac\pi2\right)$.
[i]L. Davidov[/i]
2009 Turkey Team Selection Test, 2
In a triangle $ ABC$ incircle touches the sides $ AB$, $ AC$ and $ BC$ at $ C_1$, $ B_1$ and $ A_1$ respectively. Prove that $ \sqrt {\frac {AB_1}{AB}} \plus{} \sqrt {\frac {BC_1}{BC}} \plus{} \sqrt {\frac {CA_1}{CA}}\leq\frac {3}{\sqrt {2}}$ is true.
2023 Mongolian Mathematical Olympiad, 3
Five girls and five boys took part in a competition. Suppose that we can number the boys and girls $1, 2, 3, 4, 5$ such that for each $1 \leq i,j \leq 5$, there are exactly $|i-j|$ contestants that the girl numbered $i$ and the boy numbered $j$ both know. Let $a_i$ and $b_i$ be the number of contestants that the girl numbered $i$ knows and the number of contestants that the boy numbered $i$ knows respectively. Find the minimum value of $\max(\sum\limits_{i=1}^5a_i, \sum\limits_{i=1}^5b_i)$.
(Note that for a pair of contestants $A$ and $B$, $A$ knowing $B$ doesn't mean that $B$ knows $A$ and a contestant cannot know themself.)
2020 AMC 8 -, 21
A game board consists of $64$ squares that alternate in color between black and white. The figure below shows square $P$ in the bottom and square $Q$ in the top row. A marker is placed at $P$. A [i]step[/i] consists of moving the marker onto one of the adjoining white squares in the row above. How many $7$-step paths are there from $P$ to $Q$? (The figure shows a sample path.)
[asy]//diagram by SirCalcsALot
size(200); int[] x = {6, 5, 4, 5, 6, 5, 6}; int[] y = {1, 2, 3, 4, 5, 6, 7}; int N = 7; for (int i = 0; i < 8; ++i) { for (int j = 0; j < 8; ++j) { draw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--(i,j)); if ((i+j) % 2 == 0) { filldraw((i,j)--(i+1,j)--(i+1,j+1)--(i,j+1)--(i,j)--cycle,black); } } } for (int i = 0; i < N; ++i) { draw(circle((x[i],y[i])+(0.5,0.5),0.35)); } label("$P$", (5.5, 0.5)); label("$Q$", (6.5, 7.5)); [/asy]
$\textbf{(A)}\ 28 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\ 32 \qquad \textbf{(D)}\ 33 \qquad \textbf{(E)}\ 35$