This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2006 Tournament of Towns, 2

Tags:
A $n \times n$ table is filled with the numbers as follows: the first column is filled with $1$’s, the second column with $2$’s, and so on. Then, the numbers on the main diagonal (from top-left to bottom-right) are erased. Prove that the total sums of the numbers on both sides of the main diagonal differ in exactly two times. [i](3 points)[/i]

2010 IMC, 5

Tags: inequalities
Suppose that $a,b,c$ are real numbers in the interval $[-1,1]$ such that $1 + 2abc \geq a^2+b^2+c^2$. Prove that $1+2(abc)^n \geq a^{2n} + b^{2n} + c^{2n}$ for all positive integers $n$.

2003 BAMO, 2

Five mathematicians find a bag of $100$ gold coins in a room. They agree to split up the coins according to the following plan: • The oldest person in the room proposes a division of the coins among those present. (No coin may be split.) Then all present, including the proposer, vote on the proposal. • If at least $50\%$ of those present vote in favor of the proposal, the coins are distributed accordingly and everyone goes home. (In particular, a proposal wins on a tie vote.) • If fewer than $50\%$ of those present vote in favor of the proposal, the proposer must leave the room, receiving no coins. Then the process is repeated: the oldest person remaining proposes a division, and so on. • There is no communication or discussion of any kind allowed, other than what is needed for the proposer to state his or her proposal, and the voters to cast their vote. Assume that each person is equally intelligent and each behaves optimally to maximize his or her share. How much will each person get?

2001 Balkan MO, 3

Let $a$, $b$, $c$ be positive real numbers with $abc \leq a+b+c$. Show that \[ a^2 + b^2 + c^2 \geq \sqrt 3 abc. \] [i]Cristinel Mortici, Romania[/i]

1998 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 4

In a store, there are 7 cases containing 128 apples altogether. Let $ N$ be the greatest number such that one can be certain to find a case with at least $ N$ apples. Then, the last digit of $ N$ is $ \text{(A)}\ 0 \qquad \text{(B)}\ 2 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 9$

2022 Turkey Team Selection Test, 2

Find all functions $f: \mathbb{Q^+} \rightarrow \mathbb{Q}$ satisfying $f(x)+f(y)= \left(f(x+y)+\frac{1}{x+y} \right) (1-xy+f(xy))$ for all $x, y \in \mathbb{Q^+}$.

2021 CCA Math Bonanza, L5.1

Tags:
Estimate the number of distinct submissions to this problem. Your submission must be a positive integer less than or equal to $50$. If you submit $E$, and the actual number of distinct submissions is $D$, you will receive a score of $\frac{2}{0.5|E-D|+1}$. [i]2021 CCA Math Bonanza Lightning Round #5.1[/i]

1994 All-Russian Olympiad Regional Round, 10.1

We have seven equal pails with water, filled to one half, one third, one quarter, one fifth, one eighth, one ninth, and one tenth, respectively. We are allowed to pour water from one pail into another until the first pail empties or the second one fills to the brim. Can we obtain a pail that is filled to (a) one twelfth, (b) one sixth after several such steps?

1994 Vietnam National Olympiad, 1

Find all real solutions to \[x^{3}+3x-3+\ln{(x^{2}-x+1)}=y,\] \[y^{3}+3y-3+\ln{(y^{2}-y+1)}=z,\] \[z^{3}+3z-3+\ln{(z^{2}-z+1)}=x.\]

2008 Moldova MO 11-12, 7

Triangle $ ABC$ has fixed vertices $ B$ and $ C$, so that $ BC \equal{} 2$ and $ A$ is variable. Denote by $ H$ and $ G$ the orthocenter and the centroid, respectively, of triangle $ ABC$. Let $ F\in(HG)$ so that $ \frac {HF}{FG} \equal{} 3$. Find the locus of the point $ A$ so that $ F\in BC$.

2000 Switzerland Team Selection Test, 5

Consider all words of length $n$ consisting of the letters $I,O,M$. How many such words are there, which contain no two consecutive $M$’s?

2016 Thailand Mathematical Olympiad, 9

A real number $a \ne 0$ is given. Determine all functions $f : R \to R$ satisfying $f(x)f(y) + f(x + y) = axy$ for all real numbers $x, y$.

2017 NIMO Problems, 5

Triangle $ABC$ has side lengths $AB=13$, $BC=14$, and $CA=15$. Points $D$ and $E$ are chosen on $AC$ and $AB$, respectively, such that quadrilateral $BCDE$ is cyclic and when the triangle is folded along segment $DE$, point $A$ lies on side $BC$. If the length of $DE$ can be expressed as $\tfrac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $100m+n$. [i]Proposd by Joseph Heerens[/i]

2023 Belarusian National Olympiad, 10.4

Find the maximal possible numbers one can choose from $1,\ldots,100$ such that none of the products of non-empty subset of this numbers was a perfect square.

2011 QEDMO 9th, 10

The kingdom of Pinguinia has various cities and streets, the latter being all one-way streets always run between exactly two cities, so there are no intermediate stops. Every city has exactly two streets that lead out of it and exactly two that lead into it. Prove that the streets can be divided into black and white streets so that exactly one exit of each city is black and one is white and exactly one white and one black entrance in each city.

2014 Finnish National High School Mathematics, 5

Determine the smallest number $n \in Z_+$, which can be written as $n = \Sigma_{a\in A}a^2$, where $A$ is a finite set of positive integers and $\Sigma_{a\in A}a= 2014$. In other words: what is the smallest positive number which can be written as a sum of squares of different positive integers summing to $2014$?

2007 IMO Shortlist, 1

Tags: sequence , algebra
Real numbers $ a_{1}$, $ a_{2}$, $ \ldots$, $ a_{n}$ are given. For each $ i$, $ (1 \leq i \leq n )$, define \[ d_{i} \equal{} \max \{ a_{j}\mid 1 \leq j \leq i \} \minus{} \min \{ a_{j}\mid i \leq j \leq n \} \] and let $ d \equal{} \max \{d_{i}\mid 1 \leq i \leq n \}$. (a) Prove that, for any real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$, \[ \max \{ |x_{i} \minus{} a_{i}| \mid 1 \leq i \leq n \}\geq \frac {d}{2}. \quad \quad (*) \] (b) Show that there are real numbers $ x_{1}\leq x_{2}\leq \cdots \leq x_{n}$ such that the equality holds in (*). [i]Author: Michael Albert, New Zealand[/i]

2015 Switzerland Team Selection Test, 7

Find all finite and non-empty sets $A$ of functions $f: \mathbb{R} \mapsto \mathbb{R}$ such that for all $f_1, f_2 \in A$, there exists $g \in A$ such that for all $x, y \in \mathbb{R}$ $$f_1 \left(f_2 (y)-x\right)+2x=g(x+y)$$

IV Soros Olympiad 1997 - 98 (Russia), 10.5

Three rays with a common origin are drawn on the plane, dividing the plane into three angles. One point is marked inside each corner. Using one ruler, construct a triangle whose vertices lie on the given rays and whose sides contain the given points.

2014 239 Open Mathematical Olympiad, 5

Find all possible values of $k $ such that there exist a $k\times k$ table colored in $k$ colors such that there do not exist two cells in a column or a row with the same color or four cells made of intersecting two columns and two rows painted in exactly three colors.

2008 AMC 12/AHSME, 13

Tags: geometry , ratio
Points $ A$ and $ B$ lie on a circle centered at $ O$, and $ \angle AOB\equal{}60^\circ$. A second circle is internally tangent to the first and tangent to both $ \overline{OA}$ and $ \overline{OB}$. What is the ratio of the area of the smaller circle to that of the larger circle? $ \textbf{(A)}\ \frac{1}{16} \qquad \textbf{(B)}\ \frac{1}{9} \qquad \textbf{(C)}\ \frac{1}{8} \qquad \textbf{(D)}\ \frac{1}{6} \qquad \textbf{(E)}\ \frac{1}{4}$

2005 VJIMC, Problem 4

Let $(x_n)_{n\ge2}$ be a sequence of real numbers such that $x_2>0$ and $x_{n+1}=-1+\sqrt[n]{1+nx_n}$ for $n\ge2$. Find (a) $\lim_{n\to\infty}x_n$, (b) $\lim_{n\to\infty}nx_n$.

2006 ISI B.Math Entrance Exam, 8

Let $S$ be the set of all integers $k$, $1\leq k\leq n$, such that $\gcd(k,n)=1$. What is the arithmetic mean of the integers in $S$?

2021 Polish Junior MO First Round, 6

In the convex $(2n+2) $-gon are drawn $n^2$ diagonals. Prove that one of these of diagonals cuts the $(2n+2)$ -gon into two polygons, each of which has an odd number vertices.

2014 Turkey Team Selection Test, 3

Let $r,R$ and $r_a$ be the radii of the incircle, circumcircle and A-excircle of the triangle $ABC$ with $AC>AB$, respectively. $I,O$ and $J_A$ are the centers of these circles, respectively. Let incircle touches the $BC$ at $D$, for a point $E \in (BD)$ the condition $A(IEJ_A)=2A(IEO)$ holds. Prove that \[ED=AC-AB \iff R=2r+r_a.\]