This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2003 Estonia National Olympiad, 3

Let $ABC$ be a triangle and $A_1, B_1, C_1$ points on $BC, CA, AB$, respectively, such that the lines $AA_1, BB_1, CC_1$ meet at a single point. It is known that $A, B_1, A_1, B$ are concyclic and $B, C_1, B_1, C$ are concyclic. Prove that a) $C, A_1, C_1, A$ are concyclic, b) $AA_1,, BB_1, CC_1$ are the heights of $ABC$.

1998 Brazil Team Selection Test, Problem 3

Show that it is possible to color the points of $\mathbb Q\times\mathbb Q$ in two colors in such a way that any two points having distance $1$ have distinct colors.

2021 CCA Math Bonanza, L2.3

Tags:
Broady The Boar is playing a boring board game consisting of a circle with $2021$ points on it, labeled $0$, $1$, $2$, ... $2020$ in that order clockwise. Broady is rolling $2020$-sided die which randomly produces a whole number between $1$ and $2020$, inclusive. Broady starts at the point labelled $0$. After each dice roll, Broady moves up the same number of points as the number rolled (point $2020$ is followed by point $0$). For example, if they are at $0$ and roll a $5$, they end up at $5$. If they are at $2019$ and roll a $3$, they end up at $1$. Broady continues rolling until they return to the point labelled $0$. What is the expected number of times they roll the dice? [i]2021 CCA Math Bonanza Lightning Round #2.3[/i]

2001 APMO, 5

Tags: geometry
Find the greatest integer $n$, such that there are $n+4$ points $A$, $B$, $C$, $D$, $X_1,\dots,~X_n$ in the plane with $AB\ne CD$ that satisfy the following condition: for each $i=1,2,\dots,n$ triangles $ABX_i$ and $CDX_i$ are equal.

2017 Saudi Arabia BMO TST, 4

Fibonacci sequences is defined as $f_1=1$,$f_2=2$, $f_{n+1}=f_{n}+f_{n-1}$ for $n \ge 2$. a) Prove that every positive integer can be represented as sum of several distinct Fibonacci number. b) A positive integer is called [i]Fib-unique[/i] if the way to represent it as sum of several distinct Fibonacci number is unique. Example: $13$ is not Fib-unique because $13 = 13 = 8 + 5 = 8 + 3 + 2$. Find all Fib-unique.

2005 Czech-Polish-Slovak Match, 4

We distribute $n\ge1$ labelled balls among nine persons $A,B,C, \dots , I$. How many ways are there to do this so that $A$ gets the same number of balls as $B,C,D$ and $E$ together?

2004 Junior Balkan Team Selection Tests - Romania, 4

Tags: algebra
One considers the positive integers $a < b \leq c < d $ such that $ad=bc$ and $\sqrt d - \sqrt a \leq 1 $. Prove that $a$ is a perfect square.

2014-2015 SDML (Middle School), 4

Tags:
If you pick a random $3$-digit number, what is the probability that its hundreds digit is triple the ones digit?

1985 Traian Lălescu, 2.1

Let $ ABC $ be a triangle. The perpendicular in $ B $ of the bisector of the angle $ \angle ABC $ intersects the bisector of the angle $ \angle BAC $ in $ M. $ Show that $ MC $ is perpendicular to the bisector of $ \angle BCA. $

2014 IMAR Test, 2

Let $\epsilon$  be a positive real number. A positive integer will be called $\epsilon$-squarish if it is the product of two integers $a$ and $b$ such that $1 < a < b < (1 +\epsilon )a$. Prove that there are infinitely many occurrences of six consecutive $\epsilon$ -squarish integers.

2023 Indonesia TST, A

Tags: algebra
Let $a_1, a_2, a_3, a_4, a_5$ be non-negative real numbers satisfied \[\sum_{k = 1}^{5} a_k = 20 \ \ \ \ \text{and} \ \ \ \ \sum_{k=1}^{5} a_k^2 = 100\] Find the minimum and maximum of $\text{max} \{a_1, a_2, a_3, a_4, a_5\}$

2024 Rioplatense Mathematical Olympiad, 2

In Tigre there are $2024$ islands, some of them connected by a two-way bridge. It is known that it is possible to go from any island to any other island using only the bridges (possibly several of them). In $k$ of the islands there is a flag ($0 \le k \le 2024$). Ana wants to destroy some of the bridges in such a way that after doing so, the following two conditions are met: \\ $\bullet$ If an island has a flag, it is connected to an odd number of islands. \\ $\bullet$ If an island does not have a flag, it is connected to an even number of islands. \\ Determine all values of $k$ for which Ana can always achieve her objective, no matter what the initial bridge configuration is and which islands have a flag.

2000 China National Olympiad, 2

Tags: algebra
A sequence $(a_n)$ is defined recursively by $a_1=0, a_2=1$ and for $n\ge 3$, \[a_n=\frac12na_{n-1}+\frac12n(n-1)a_{n-2}+(-1)^n\left(1-\frac{n}{2}\right).\] Find a closed-form expression for $f_n=a_n+2\binom{n}{1}a_{n-1}+3\binom{n}{2}a_{n-2}+\ldots +(n-1)\binom{n}{n-2}a_2+n\binom{n}{n-1}a_1$.

2005 Kyiv Mathematical Festival, 5

Tags:
The first row of a table of size $ 2005\times5$ is filled with 1,2,3,4,5 so that every two neighbouring cells contain distinct numbers. Prove that it is possible to fill four other rows with 1,2,3,4,5 so that any neighbouring cells in them will contain distinct numbers as well as any cells of the same column will contain pairwise distinct numbers.

2007 Peru IMO TST, 1

Let $k$ be a positive number and $P$ a Polynomio with integer coeficients. Prove that exists a $n$ positive integer such that: $P(1)+P(2)+\dots+P(N)$ is divisible by $k$.

2008 AIME Problems, 11

In triangle $ ABC$, $ AB \equal{} AC \equal{} 100$, and $ BC \equal{} 56$. Circle $ P$ has radius $ 16$ and is tangent to $ \overline{AC}$ and $ \overline{BC}$. Circle $ Q$ is externally tangent to $ P$ and is tangent to $ \overline{AB}$ and $ \overline{BC}$. No point of circle $ Q$ lies outside of $ \triangle ABC$. The radius of circle $ Q$ can be expressed in the form $ m \minus{} n\sqrt {k}$, where $ m$, $ n$, and $ k$ are positive integers and $ k$ is the product of distinct primes. Find $ m \plus{} nk$.

1996 Nordic, 1

Show that there exists an integer divisible by $1996$ such that the sum of the its decimal digits is $1996$.

1993 India Regional Mathematical Olympiad, 1

Let $ABC$ be an acute angled triangle and $CD$ be the altitude through $C$. If $AB = 8$ and $CD = 6$, find the distance between the midpoints of $AD$ and $BC$.

2019 German National Olympiad, 4

Show that for each non-negative integer $n$ there are unique non-negative integers $x$ and $y$ such that we have \[n=\frac{(x+y)^2+3x+y}{2}.\]

2017 IFYM, Sozopol, 1

Tags: algebra
The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is called [i]“Sozopolian”[/i], if it satisfies the following two properties: For each two $x,y\in \mathbb{Z}$ which aren’t multiples of 17 the number $f(xy)-f(x)-f(y)$ is divisible by 8; For $\forall x\in \mathbb{Z}$ the number $f(x+17)-f(x)$ is divisible by 8. Does there exist a [i]Sozopolian[/i] function for which a) $f(2)=1; \quad$ b) $f(3)=1$?

2019 Romania EGMO TST, P2

Determine the digits $0\leqslant c\leqslant 9$ such that for any positive integer $k{}$ there exists a positive integer $n$ such that the last $k{}$ digits of $n^9$ are equal to $c{}.$

2017 BMT Spring, 15

Alice and Bob live on the edges and vertices of the unit cube. Alice begins at point $(0, 0, 0)$ and Bob begins at $(1, 1, 1)$. Every second, each of them chooses one of the three adjacent corners and walks at a constant rate of $1$ unit per second along the edge until they reach the corner, after which they repeat the process. What is the expected amount of time in seconds before Alice and Bob meet?

2003 India Regional Mathematical Olympiad, 4

Find the number of ordered triples $(x,y,z)$ of non-negative integers satisfying (i) $x \leq y \leq z$ (ii) $x + y + z \leq 100.$

2020 Jozsef Wildt International Math Competition, W12

Tags: inequalities
If $m,n,p,q\in\mathbb N,m,n,p,q\ge4$ then prove that: $$4^n(4^n+1)+4^m(4^m+1)+4^p(4^p+1)+4^q(4^q+1)\ge4mnpq(mnpq+1)$$ [i]Proposed by Daniel Sitaru[/i]

2015 Brazil Team Selection Test, 3

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]