Found problems: 85335
2001 AIME Problems, 15
The numbers 1, 2, 3, 4, 5, 6, 7, and 8 are randomly written on the faces of a regular octahedron so that each face contains a different number. The probability that no two consecutive numbers, where 8 and 1 are considered to be consecutive, are written on faces that share an edge is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2020 Baltic Way, 8
Let $n$ be a given positive integer.
A restaurant offers a choice of $n$ starters, $n$ main dishes, $n$ desserts and $n$ wines.
A merry company dines at the restaurant, with each guest choosing a starter, a main dish, a dessert and a wine.
No two people place exactly the same order.
It turns out that there is no collection of $n$ guests such that their orders coincide in three of these aspects,
but in the fourth one they all differ. (For example, there are no $n$ people that order exactly the same three courses of food, but $n$ different wines.) What is the maximal number of guests?
2010 Indonesia TST, 3
Let $ a_1,a_2,\dots$ be sequence of real numbers such that $ a_1\equal{}1$, $ a_2\equal{}\dfrac{4}{3}$, and \[ a_{n\plus{}1}\equal{}\sqrt{1\plus{}a_na_{n\minus{}1}}, \quad \forall n \ge 2.\] Prove that for all $ n \ge 2$, \[ a_n^2>a_{n\minus{}1}^2\plus{}\dfrac{1}{2}\] and \[ 1\plus{}\dfrac{1}{a_1}\plus{}\dfrac{1}{a_2}\plus{}\dots\plus{}\dfrac{1}{a_n}>2a_n.\]
[i]Fajar Yuliawan, Bandung[/i]
2015 Mexico National Olympiad, 1
Let $ABC$ be an acuted-angle triangle and let $H$ be it's orthocenter. Let $PQ$ be a segment through $H$ such that $P$ lies on $AB$ and $Q$ lies on $AC$ and such that $ \angle PHB= \angle CHQ$. Finally, in the circumcircle of $\triangle ABC$, consider $M$ such that $M$ is the mid point of the arc $BC$ that doesn't contain $A$. Prove that $MP=MQ$
Proposed by Eduardo Velasco/Marco Figueroa
2005 Cono Sur Olympiad, 1
Let $ABC$ be a isosceles triangle, with $AB=AC$. A line $r$ that pass through the incenter $I$ of $ABC$ touches the sides $AB$ and $AC$ at the points $D$ and $E$, respectively. Let $F$ and $G$ be points on $BC$ such that $BF=CE$ and $CG=BD$. Show that the angle $\angle FIG$ is constant when we vary the line $r$.
2011 Philippine MO, 1
Find all nonempty finite sets $X$ of real numbers such that for all $x\in X$, $x+|x| \in X$.
2010 Estonia Team Selection Test, 5
Let $P(x, y)$ be a non-constant homogeneous polynomial with real coefficients such that $P(\sin t, \cos t) = 1$ for every real number $t$. Prove that there exists a positive integer $k$ such that $P(x, y) = (x^2 + y^2)^k$.
2024 Israel TST, P1
Solve in positive integers:
\[x^{y^2+1}+y^{x^2+1}=2^z\]
2013 ELMO Shortlist, 7
A $2^{2014} + 1$ by $2^{2014} + 1$ grid has some black squares filled. The filled black squares form one or more snakes on the plane, each of whose heads splits at some points but never comes back together. In other words, for every positive integer $n$ greater than $2$, there do not exist pairwise distinct black squares $s_1$, $s_2$, \dots, $s_n$ such that $s_i$ and $s_{i+1}$ share an edge for $i=1,2, \dots, n$ (here $s_{n+1}=s_1$).
What is the maximum possible number of filled black squares?
[i]Proposed by David Yang[/i]
1984 IMO Longlists, 27
The function $f(n)$ is defined on the nonnegative integers $n$ by: $f(0) = 0, f(1) = 1$, and
\[f(n) = f\left(n -\frac{1}{2}m(m - 1)\right)-f\left(\frac{1}{2}m(m+ 1)-n\right)\]
for $\frac{1}{2}m(m - 1) < n \le \frac{1}{2}m(m+ 1), m \ge 2$. Find the smallest integer $n$ for which $f(n) = 5$.
1959 IMO, 5
An arbitrary point $M$ is selected in the interior of the segment $AB$. The square $AMCD$ and $MBEF$ are constructed on the same side of $AB$, with segments $AM$ and $MB$ as their respective bases. The circles circumscribed about these squares, with centers $P$ and $Q$, intersect at $M$ and also at another point $N$. Let $N'$ denote the point of intersection of the straight lines $AF$ and $BC$.
a) Prove that $N$ and $N'$ coincide;
b) Prove that the straight lines $MN$ pass through a fixed point $S$ independent of the choice of $M$;
c) Find the locus of the midpoints of the segments $PQ$ as $M$ varies between $A$ and $B$.
2007 Purple Comet Problems, 6
The product of two positive numbers is equal to $50$ times their sum and $75$ times their difference. Find their sum.
2007 Iran Team Selection Test, 3
Find all solutions of the following functional equation: \[f(x^{2}+y+f(y))=2y+f(x)^{2}. \]
1969 German National Olympiad, 2
There is a circle $k$ in a plane with center $M$ and radius $r$. The following illustration, through which every point $P \ne M$., is called a “reflection on the circle $k$” from $\varepsilon$ a point $P'$ from $\varepsilon$ is assigned:
(1) $P'$ lies on the ray emanating from$ M$ and passing through $P$.
(2) It is $MP \cdot MP' = r^2$.
a) Construct the mirror point $ P'$ for any given point $P \ne M$ inside $k$.
b) Let another circle $k_1$ be given arbitrarily, but such that $M$ lies outside $k_1$.Construct $k'_1$ , i.e. the set of all mirror points $P'$ of the points $P$ of $k_1$.
2011 Princeton University Math Competition, B5
Four circles are situated in the plane so that each is tangent to the other three. If three of the radii are $5$, $5$, and $8$, the largest possible radius of the fourth circle is $a/b$, where $a$ and $b$ are positive integers and gcd$(a, b) = 1$. Find $a + b$.
MBMT Geometry Rounds, 2017
[hide=R stands for Ramanujan, P stands for Pascal]they had two problem sets under those two names[/hide]
[b]R1.[/b] What is the distance between the points $(6, 0)$ and $(-2, 0)$?
[b]R2 / P1.[/b] Angle $X$ has a degree measure of $35$ degrees. What is the supplement of the complement of angle $X$?
[i]The complement of an angle is $90$ degrees minus the angle measure. The supplement of an angle is $180$ degrees minus the angle measure.
[/i]
[b]R3.[/b] A cube has a volume of $729$. What is the side length of the cube?
[b]R4 / P2.[/b] A car that always travels in a straight line starts at the origin and goes towards the point $(8, 12)$. The car stops halfway on its path, turns around, and returns back towards the origin. The car again stops halfway on its return. What are the car’s final coordinates?
[b]R5.[/b] A full, cylindrical soup can has a height of $16$ and a circular base of radius $3$. All the soup in the can is used to fill a hemispherical bowl to its brim. What is the radius of the bowl?
[b]R6.[/b] In square $ABCD$, the numerical value of the length of the diagonal is three times the numerical value of the area of the square. What is the side length of the square?
[b]R7.[/b] Consider triangle $ABC$ with $AB = 3$, $BC = 4$, and $AC = 5$. The altitude from $B$ to $AC$ intersects $AC$ at $H$. Compute $BH$.
[b]R8.[/b] Mary shoots $5$ darts at a square with side length $2$. Let $x$ be equal to the shortest distance between any pair of her darts. What is the maximum possible value of $x$?
[b]P3.[/b] Let $ABC$ be an isosceles triangle such that $AB = BC$ and all of its angles have integer degree measures. Two lines, $\ell_1$ and $\ell_2$, trisect $\angle ABC$. $\ell_1$ and $\ell_2$ intersect $AC$ at points $D$ and $E$ respectively, such that $D$ is between $A$ and $E$. What is the smallest possible integer degree measure of $\angle BDC$?
[b]P4.[/b] In rectangle $ABCD$, $AB = 9$ and $BC = 8$. $W$, $X$, $Y$ , and $Z$ are on sides $AB$, $BC$, $CD$, and $DA$, respectively, such that $AW = 2WB$, $CX = 3BX$, $CY = 2DY$ , and $AZ = DZ$. If $WY$ and $XZ$ intersect at $O$, find the area of $OWBX$.
[b]P5.[/b] Consider a regular $n$-gon with vertices $A_1A_2...A_n$. Find the smallest value of $n$ so that there exist positive integers $i, j, k \le n$ with $\angle A_iA_jA_k = \frac{34^o}{5}$.
[b]P6.[/b] In right triangle $ABC$ with $\angle A = 90^o$ and $AB < AC$, $D$ is the foot of the altitude from $A$ to $BC$, and $M$ is the midpoint of $BC$. Given that $AM = 13$ and $AD = 5$, what is $\frac{AB}{AC}$ ?
[b]P7.[/b] An ant is on the circumference of the base of a cone with radius $2$ and slant height $6$. It crawls to the vertex of the cone $X$ in an infinite series of steps. In each step, if the ant is at a point $P$, it crawls along the shortest path on the exterior of the cone to a point $Q$ on the opposite side of the cone such that $2QX = PX$. What is the total distance that the ant travels along the exterior of the cone?
[b]P8.[/b] There is an infinite checkerboard with each square having side length $2$. If a circle with radius $1$ is dropped randomly on the checkerboard, what is the probability that the circle lies inside of exactly $3$ squares?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 JBMO TST - Macedonia, 2
A triangle $ ABC $ is given, and a segment $ PQ=t $ on $ BC $ such that $ P $ is between $ B $ and $ Q $ and $ Q $ is between $ P $ and $ C $. Let $ PP_1 || AB $, $ P_1 $ is on $ AC $, and $ PP_2 || AC $, $ P_2 $ is on $ AB $. Points $ Q_1 $ and $ Q_2 $ аrе defined similar. Prove that the sum of the areas of $ PQQ_1P_1 $ and $ PQQ_2P_2 $ does not depend from the position of $ PQ $ on $ BC $.
STEMS 2021 Math Cat B, Q2
Determine all non-constant monic polynomials $P(x)$ with integer coefficients such that no prime $p>10^{100}$ divides any number of the form $P(2^n)$
2015 Spain Mathematical Olympiad, 1
On the graph of a polynomial with integer coefficients, two points are chosen with integer coordinates. Prove that if the distance between them is an integer, then the segment that connects them is parallel to the horizontal axis.
2020/2021 Tournament of Towns, P5
Does there exist a rectangle which can be cut into a hundred rectangles such that all of them are similar to the original one but no two are congruent?
[i]Mikhail Murashkin[/i]
2002 France Team Selection Test, 2
Let $ ABC$ be a non-equilateral triangle. Denote by $ I$ the incenter and by $ O$ the circumcenter of the triangle $ ABC$. Prove that $ \angle AIO\leq\frac{\pi}{2}$ holds if and only if $ 2\cdot BC\leq AB\plus{}AC$.
2005 MOP Homework, 5
Show that for nonnegative integers $m$ and $n$,
$\frac{\dbinom{m}{0}}{n+1}-\frac{\dbinom{m}{1}}{n+2}+...+(-1)^m\frac{\dbinom{m}{m}}{n+m+1}$
$=\frac{\dbinom{n}{0}}{m+1}-\frac{\dbinom{n}{1}}{m+2}+...+(-1)^n\frac{\dbinom{n}{n}}{m+n+1}$.
2010 Hanoi Open Mathematics Competitions, 3
Find $5$ last digits of the number $M = 5^{2010}$ .
(A): $65625$, (B): $45625$, (C): $25625$, (D): $15625$, (E) None of the above.
2009 Sharygin Geometry Olympiad, 18
Given three parallel lines on the plane. Find the locus of incenters of triangles with vertices lying on these lines (a single vertex on each line).
ABMC Team Rounds, 2020
[u]Round 5[/u]
[b]5.1.[/b] Quadrilateral $ABCD$ is such that $\angle ABC = \angle ADC = 90^o$ , $\angle BAD = 150^o$ , $AD = 3$, and $AB = \sqrt3$. The area of $ABCD$ can be expressed as $p\sqrt{q}$ for positive integers $p, q$ where $q$ is not divisible by the square of any prime. Find $p + q$.
[b]5.2.[/b] Neetin wants to gamble, so his friend Akshay describes a game to him. The game will consist of three dice: a $100$-sided one with the numbers $1$ to $100$, a tetrahedral one with the numbers $1$ to $4$, and a normal $6$-sided die. If Neetin rolls numbers with a product that is divisible by $21$, he wins. Otherwise, he pays Akshay $100$ dollars. The number of dollars that Akshay must pay Neetin for a win in order to make this game fair is $a/b$ for relatively prime positive integers $a, b$. Find $a + b$. (Fair means the expected net gain is $0$. )
[b]5.3.[/b] What is the sum of the fourth powers of the roots of the polynomial $P(x) = x^2 + 2x + 3$?
[u]Round 6[/u]
[b]6.1.[/b] Consider the set $S = \{1, 2, 3, 4,..., 25\}$. How many ordered $n$-tuples $S_1 = (a_1, a_2, a_3,..., a_n)$ of pairwise distinct ai exist such that $a_i \in S$ and $i^2 | a_i$ for all $1 \le i \le n$?
[b]6.2.[/b] How many ways are there to place $2$ identical rooks and $ 1$ queen on a $ 4 \times 4$ chessboard such that no piece attacks another piece? (A queen can move diagonally, vertically or horizontally and a rook can move vertically or horizontally)
[b]6.3.[/b] Let $L$ be an ordered list $\ell_1$, $\ell_2$, $...$, $\ell_{36}$ of consecutive positive integers who all have the sum of their digits not divisible by $11$. It is given that $\ell_1$ is the least element of $L$. Find the least possible value of $\ell_1$.
[u]Round 7[/u]
[b]7.1.[/b] Spencer, Candice, and Heather love to play cards, but they especially love the highest cards in the deck - the face cards (jacks, queens, and kings). They also each have a unique favorite suit: Spencer’s favorite suit is spades, Candice’s favorite suit is clubs, and Heather’s favorite suit is hearts. A dealer pulls out the $9$ face cards from every suit except the diamonds and wants to deal them out to the $3$ friends. How many ways can he do this so that none of the $3$ friends will see a single card that is part of their favorite suit?
[b]7.2.[/b] Suppose a sequence of integers satisfies the recurrence $a_{n+3} = 7a_{n+2} - 14a_{n+1} + 8a_n$. If $a_0 = 4$, $a_1 = 9$, and $a_2 = 25$, find $a_{16}$. Your answer will be in the form $2^a + 2^b + c$, where $2^a < a_{16} < 2^{a+1}$ and $b$ is as large as possible. Find $a + b + c$.
[b]7.3.[/b] Parallel lines $\ell_1$ and $\ell_2$ are $1$ unit apart. Unit square $WXYZ$ lies in the same plane with vertex $W$ on $\ell_1$. Line $\ell_2$ intersects segments $YX$ and $YZ$ at points $U$ and $O$, respectively. Given $UO =\frac{9}{10}$, the inradius of $\vartriangle YOU$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$. Find $m + n$.
[u]Round 8[/u]
[b]8.[/b] Let $A$ be the number of contestants who participated in at least one of the three rounds of the 2020 ABMC April contest. Let $B$ be the number of times the letter b appears in the Accuracy Round. Let $M$ be the number of
people who submitted both the speed and accuracy rounds before 2:00 PM EST. Further, let $C$ be the number of
times the letter c appears in the Speed Round. Estimate
$$A \cdot B + M \cdot C.$$Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input.
$$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.05 |I|}, 13 - \frac{|I-X|}{0.05 |I-2X|} \right\} \right\rceil \right\}$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2766239p24226402]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].