This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1998 Putnam, 1

Tags:
Find the minimum value of \[\dfrac{(x+1/x)^6-(x^6+1/x^6)-2}{(x+1/x)^3+(x^3+1/x^3)}\] for $x>0$.

2012 Danube Mathematical Competition, 1

Given a positive integer $n$, determine the maximum number of lattice points in the plane a square of side length $n +\frac{1}{2n+1}$ may cover.

2010 China Team Selection Test, 2

In a football league, there are $n\geq 6$ teams. Each team has a homecourt jersey and a road jersey with different color. When two teams play, the home team always wear homecourt jersey and the road team wear their homecourt jersey if the color is different from the home team's homecourt jersey, or otherwise the road team shall wear their road jersey. It is required that in any two games with 4 different teams, the 4 teams' jerseys have at least 3 different color. Find the least number of color that the $n$ teams' $2n$ jerseys may use.

2015 Postal Coaching, Problem 2

Find all pairs of cubic equations $x^3+ax^2+bx+c=0$ and $x^3+bx^2+ax+c=0$ where $a, b$ are positive integers, $c\neq 0$ is an integer, such that each equation has three integer roots and exactly one of these three roots is common to both the equations.

2007 Peru MO (ONEM), 3

We say that a natural number of at least two digits $E$ is [i]special [/i] if each time two adjacent digits of $E$ are added, a divisor of $E$ is obtained. For example, $2124$ is special, since the numbers $2 + 1$, $1 + 2$ and $2 + 4$ are all divisors of $2124$. Find the largest value of $n$ for which there exist $n$ consecutive natural numbers such that they are all special.

PEN J Problems, 20

Show that $\sigma (n) -d(m)$ is even for all positive integers $m$ and $n$ where $m$ is the largest odd divisor of $n$.

2014 China Team Selection Test, 1

Prove that for any positive integers $k$ and $N$, \[\left(\frac{1}{N}\sum\limits_{n=1}^{N}(\omega (n))^k\right)^{\frac{1}{k}}\leq k+\sum\limits_{q\leq N}\frac{1}{q},\] where $\sum\limits_{q\leq N}\frac{1}{q}$ is the summation over of prime powers $q\leq N$ (including $q=1$). Note: For integer $n>1$, $\omega (n)$ denotes number of distinct prime factors of $n$, and $\omega (1)=0$.

2003 India IMO Training Camp, 10

Let $n$ be a positive integer greater than $1$, and let $p$ be a prime such that $n$ divides $p-1$ and $p$ divides $n^3-1$. Prove that $4p-3$ is a square.

2014 ELMO Shortlist, 2

Tags: inequalities
Given positive reals $a,b,c,p,q$ satisfying $abc=1$ and $p \geq q$, prove that \[ p \left(a^2+b^2+c^2\right) + q\left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq (p+q) (a+b+c). \][i]Proposed by AJ Dennis[/i]

2020 Brazil Team Selection Test, 4

Let $\mathcal L$ be the set of all lines in the plane and let $f$ be a function that assigns to each line $\ell\in\mathcal L$ a point $f(\ell)$ on $\ell$. Suppose that for any point $X$, and for any three lines $\ell_1,\ell_2,\ell_3$ passing through $X$, the points $f(\ell_1),f(\ell_2),f(\ell_3)$, and $X$ lie on a circle. Prove that there is a unique point $P$ such that $f(\ell)=P$ for any line $\ell$ passing through $P$. [i]Australia[/i]

2016 CMIMC, 1

Tags: function , algebra
Let \[f(x)=\dfrac{1}{1-\dfrac{1}{1-x}}\,.\] Compute $f^{2016}(2016)$, where $f$ is composed upon itself $2016$ times.

2016 ASDAN Math Tournament, 7

Tags:
Heesu, Xingyou, and Bill are in a class with $9$ other children. The teacher randomly arranges the children in a circle for story time. However, Heesu, Xingyou, and Bill want to sit near each other. Compute the probability that all $3$ children are seated within a consecutive group of $5$ seats.

1957 Polish MO Finals, 5

Given a line $ m $ and a segment $ AB $ parallel to it. Divide the segment $ AB $ into three equal parts using only a ruler, i.e. drawing only the lines.

2007 Stanford Mathematics Tournament, 8

Tags:
A $13$-foot tall extraterrestrial is standing on a very small spherical planet with radius $156$ feet. It sees an ant crawling along the horizon. If the ant circles the extraterrestrial once, always staying on the horizon, how far will it travel (in feet)?

2009 Postal Coaching, 4

All the integers from $1$ to $100$ are arranged in a $10 \times 10$ table as shown below. Prove that if some ten numbers are removed from the table, the remaining $90$ numbers contain 10 numbers in Arithmetic Progression. $1 \,\,\,\,2\,\, \,\,3 \,\,\,\,... \,\,10$ $11 \,\,12 \,\,13 \,\,... \,\,20$ $\,\,.\,\,\,\,.\,\,\,.$ $\,\,.\,\,\,\,.\,\,\,\,.$ $91 \,\,92 \,\,93\,\, ... \,\,100$

2001 Moldova National Olympiad, Problem 2

Tags: geometry
A regular $n$-gon is inscribed in a unit circle. Compute the product from a fixed vertex to all the other vertices.

2004 District Olympiad, 2

Let $ABC$ be a triangle and $D$ a point on the side $BC$. The angle bisectors of $\angle ADB ,\angle ADC$ intersect $AB ,AC$ at points $M ,N$ respectively. The angle bisectors of $\angle ABD , \angle ACD$ intersects $DM , DN$ at points $K , L$ respectively. Prove that $AM = AN$ if and only if $MN$ and $KL$ are parallel.

2004 Iran MO (3rd Round), 24

Tags: geometry
In triangle $ ABC$, points $ M,N$ lie on line $ AC$ such that $ MA\equal{}AB$ and $ NB\equal{}NC$. Also $ K,L$ lie on line $ BC$ such that $ KA\equal{}KB$ and $ LA\equal{}LC$. It is know that $ KL\equal{}\frac12{BC}$ and $ MN\equal{}AC$. Find angles of triangle $ ABC$.

1996 IMO Shortlist, 2

A square $ (n \minus{} 1) \times (n \minus{} 1)$ is divided into $ (n \minus{} 1)^2$ unit squares in the usual manner. Each of the $ n^2$ vertices of these squares is to be coloured red or blue. Find the number of different colourings such that each unit square has exactly two red vertices. (Two colouring schemse are regarded as different if at least one vertex is coloured differently in the two schemes.)

2011 Stars Of Mathematics, 2

Prove there do exist infinitely many positive integers $n$ such that if a prime $p$ divides $n(n+1)$ then $p^2$ also divides it (all primes dividing $n(n+1)$ bear exponent at least two). Exhibit (at least) two values, one even and one odd, for such numbers $n>8$. (Pál Erdös & Kurt Mahler)

2019 AMC 12/AHSME, 18

Tags: geometry
A sphere with center $O$ has radius $6$. A triangle with sides of length $15, 15,$ and $24$ is situated in space so that each of its sides is tangent to the sphere. What is the distance between $O$ and the plane determined by the triangle? $ \textbf{(A) }2\sqrt{3}\qquad \textbf{(B) }4\qquad \textbf{(C) }3\sqrt{2}\qquad \textbf{(D) }2\sqrt{5}\qquad \textbf{(E) }5\qquad $

1984 Kurschak Competition, 1

Writing down the first $4$ rows of the Pascal triangle in the usual way and then adding up the numbers in vertical columns, we obtain $7$ numbers as shown above. If we repeat this procedure with the first $1024$ rows of the Pascal triangle, how many of the $2047$ numbers thus obtained will be odd? [img]https://cdn.artofproblemsolving.com/attachments/8/a/4dc4a815d8b002c9f36a6da7ad6e1c11a848e9.png[/img]

2006 France Team Selection Test, 3

Let $a$, $b$ be positive integers such that $b^n+n$ is a multiple of $a^n+n$ for all positive integers $n$. Prove that $a=b$. [i]Proposed by Mohsen Jamali, Iran[/i]

2005 Sharygin Geometry Olympiad, 23

Envelop the cube in one layer with five convex pentagons of equal areas.

2020 SAFEST Olympiad, 5

Tags: algebra
Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\] Define the set $A$ by \[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\] Prove that, if $A$ is not empty, then \[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]