This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1996 Tournament Of Towns, (512) 5

Does there exist a $6$-digit number $A$ such that none of its $500 000$ multiples $A$, $2A$, $3A$, ..., $500 000A$ ends in $6$ identical digits? (S Tokarev)

2003 Bosnia and Herzegovina Team Selection Test, 3

Prove that for every positive integer $n$ holds: $(n-1)^n+2n^n \leq (n+1)^{n} \leq 2(n-1)^n+2n^{n}$

2017 Iranian Geometry Olympiad, 2

Tags: geometry
Two circles $\omega_1,\omega_2$ intersect at $A,B$. An arbitrary line through $B$ meets $\omega_1,\omega_2$ at $C,D$ respectively. The points $E,F$ are chosen on $\omega_1,\omega_2$ respectively so that $CE=CB,\ BD=DF$. Suppose that $BF$ meets $\omega_1$ at $P$, and $BE$ meets $\omega_2$ at $Q$. Prove that $A,P,Q$ are collinear. [i]Proposed by Iman Maghsoudi[/i]

2015 Auckland Mathematical Olympiad, 3

In the calculation $HE \times EH = WHEW$, where different letters stand for different nonzero digits. Find the values of all the letters.

2016 EGMO TST Turkey, 1

Tags: inequalities
Prove that \[ x^4y+y^4z+z^4x+xyz(x^3+y^3+z^3) \geq (x+y+z)(3xyz-1) \] for all positive real numbers $x, y, z$.

2012 Purple Comet Problems, 17

Tags:
How many positive integer solutions are there to $w+x+y+z=20$ where $w+x\ge 5$ and $y+z\ge 5$?

2014 Korea Junior Math Olympiad, 2

Let there be $2n$ positive reals $a_1,a_2,...,a_{2n}$. Let $s = a_1 + a_3 +...+ a_{2n-1}$, $t = a_2 + a_4 + ... + a_{2n}$, and $x_k = a_k + a_{k+1} + ... + a_{k+n-1}$ (indices are taken modulo $2n$). Prove that $$\frac{s}{x_1}+\frac{t}{x_2}+\frac{s}{x_3}+\frac{t}{x_4}+...+\frac{s}{x_{2n-1}}+\frac{t}{x_{2n}}>\frac{2n^2}{n+1}$$

2020 IMO Shortlist, N3

A deck of $n > 1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards. For which $n$ does it follow that the numbers on the cards are all equal? [i]Proposed by Oleg Košik, Estonia[/i]

2005 Hong kong National Olympiad, 4

Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$. Prove that\[ 6(a^3+b^3+c^3+d^3)\ge(a^2+b^2+c^2+d^2)+\frac{1}{8} \]

1996 Flanders Math Olympiad, 3

Consider the points $1,\frac12,\frac13,...$ on the real axis. Find the smallest value $k \in \mathbb{N}_0$ for which all points above can be covered with 5 [b]closed[/b] intervals of length $\frac1k$.

1988 Balkan MO, 4

Let $(a_{n})_{n\geq 1}$ be a sequence defined by $a_{n}=2^{n}+49$. Find all values of $n$ such that $a_{n}=pg, a_{n+1}=rs$, where $p,q,r,s$ are prime numbers with $p<q, r<s$ and $q-p=s-r$.

2005 Purple Comet Problems, 5

In January Jeff’s investment went up by three quarters. In February it went down by one quarter. In March it went up by one third. In April it went down by one fifth. In May it went up by one seventh. In June Jeff’s investment fell by $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. If Jeff’s investment was worth the same amount at the end of June as it had been at the beginning of January, find $m + n$.

1972 IMO Longlists, 8

We are given $3n$ points $A_1,A_2, \ldots , A_{3n}$ in the plane, no three of them collinear. Prove that one can construct $n$ disjoint triangles with vertices at the points $A_i.$

1989 IMO Longlists, 93

Prove that for each positive integer $ n$ there exist $ n$ consecutive positive integers none of which is an integral power of a prime number.

1994 Iran MO (2nd round), 3

Let $n >3$ be an odd positive integer and $n=\prod_{i=1}^k p_i^{\alpha_i}$ where $p_i$ are primes and $\alpha_i$ are positive integers. We know that \[m=n(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n}).\] Prove that there exists a prime $P$ such that $P|2^m -1$ but $P \nmid n.$

II Soros Olympiad 1995 - 96 (Russia), 9.7

Through a point located on a side of a triangle of area $1$, two straight lines are drawn parallel to the two remaining sides. They divided the triangle into three parts. Let $s$ be the largest of the areas of these parts. Find the smallest possible value of $s$.

1994 AIME Problems, 11

Ninety-four bricks, each measuring $4''\times10''\times19'',$ are to stacked one on top of another to form a tower 94 bricks tall. Each brick can be oriented so it contribues $4''$ or $10''$ or $19''$ to the total height of the tower. How many differnt tower heights can be achieved using all 94 of the bricks?

1994 Turkey Team Selection Test, 2

Tags: geometry
Let $O$ be the center and $[AB]$ be the diameter of a semicircle. $E$ is a point between $O$ and $B$. The perpendicular to $[AB]$ at $E$ meets the semicircle at $D$. A circle which is internally tangent to the arc $\overarc{BD}$ is also tangent to $[DE]$ and $[EB]$ at $K$ and $C$, respectively. Prove that $\widehat{EDC}=\widehat{BDC}$.

1998 USAMTS Problems, 2

There are infinitely many ordered pairs $(m,n)$ of positive integers for which the sum \[ m + ( m + 1) + ( m + 2) +... + ( n - 1 )+n\] is equal to the product $mn$. The four pairs with the smallest values of $m$ are $(1, 1), (3, 6), (15, 35),$ and $(85, 204)$. Find three more $(m, n)$ pairs.

1993 AMC 12/AHSME, 14

The convex pentagon $ABCDE$ has $\angle A=\angle B=120^{\circ}$, $EA=AB=BC=2$ and $CD=DE=4$. What is the area of $ABCDE$? [asy] draw((0,0)--(1,0)--(1.5,sqrt(3)/2)--(0.5,3sqrt(3)/2)--(-0.5,sqrt(3)/2)--cycle); dot((0,0)); dot((1,0)); dot((1.5,sqrt(3)/2)); dot((0.5,3sqrt(3)/2)); dot((-0.5,sqrt(3)/2)); label("A", (0,0), SW); label("B", (1,0), SE); label("C", (1.5,sqrt(3)/2), E); label("D", (0.5,3sqrt(3)/2), N); label("E", (-.5, sqrt(3)/2), W); [/asy] $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 7\sqrt{3} \qquad\textbf{(C)}\ 15 \qquad\textbf{(D)}\ 9\sqrt{3} \qquad\textbf{(E)}\ 12\sqrt{5} $

2016 JBMO Shortlist, 1

Determine the largest positive integer $n$ that divides $p^6 - 1$ for all primes $p > 7$.

1991 Mexico National Olympiad, 4

The diagonals $AC$ and $BD$ of a convex quarilateral $ABCD$ are orthogonal. Let $M,N,R,S$ be the midpoints of the sides $AB,BC,CD$ and $DA$ respectively, and let $W,X,Y,Z$ be the projections of the points $M,N,R$ and $S$ on the lines $CD,DA,AB$ and $BC$, respectively. Prove that the points $M,N,R,S,W,X,Y$ and $Z$ lie on a circle.

2018 ELMO Shortlist, 2

We say that a positive integer $n$ is $m$[i]-expressible[/i] if it is possible to get $n$ from some $m$ digits and the six operations $+,-,\times,\div$, exponentiation $^\wedge$, and concatenation $\oplus$. For example, $5625$ is $3$-expressible (in two ways): both $5\oplus (5^\wedge 4)$ and $(7\oplus 5)^\wedge 2$ yield $5625$. Does there exist a positive integer $N$ such that all positive integers with $N$ digits are $(N-1)$-expressible? [i]Proposed by Krit Boonsiriseth[/i]

2021 Brazil National Olympiad, 1

In a school there are $2021$ doors with the numbers $1,2,\dots,2021$. In a day $2021$ students play the following game: Initially all the doors are closed, and each student receive a card to define the order, there are exactly $2021$ cards. The numbers in the cards are $1,2,\dots,2020,2021$. The order will be student $1$ first, student $2$ will be the second, and going on. The student $k$ will change the state of the doors $k,2k,4k,8k,\dots,2^pk$ with $2^pk\leq 2021\leq 2^{p+1}k$. Change the state is [b]if the door was close, it will be open and vice versa.[/b] a) After the round of the student $16$, determine the configuration of the doors $1,2,\dots,16$ b) After the round of the student $2021$, determine how many doors are closed.

2012 AMC 12/AHSME, 13

Two parabolas have equations $y=x^2+ax+b$ and $y=x^2+cx+d$, where $a$, $b$, $c$, and $d$ are integers (not necessarily different), each chosen independently by rolling a fair six-sided die. What is the probability that the parabolas have at least one point in common? $\textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{25}{36} \qquad\textbf{(C)}\ \frac{5}{6} \qquad\textbf{(D)}\ \frac{31}{36} \qquad\textbf{(E)}\ 1 $