Found problems: 85335
2018 LMT Spring, Individual
[b]p1.[/b] Evaluate $6^4 +5^4 +3^4 +2^4$.
[b]p2.[/b] What digit is most frequent between $1$ and $1000$ inclusive?
[b]p3.[/b] Let $n = gcd \, (2^2 \cdot 3^3 \cdot 4^4,2^4 \cdot 3^3 \cdot 4^2)$. Find the number of positive integer factors of $n$.
[b]p4.[/b] Suppose $p$ and $q$ are prime numbers such that $13p +5q = 91$. Find $p +q$.
[b]p5.[/b] Let $x = (5^3 -5)(4^3 -4)(3^3 -3)(2^3 -2)(1^3 -1)$. Evaluate $2018^x$ .
[b]p6.[/b] Liszt the lister lists all $24$ four-digit integers that contain each of the digits $1,2,3,4$ exactly once in increasing order. What is the sum of the $20$th and $18$th numbers on Liszt’s list?
[b]p7.[/b] Square $ABCD$ has center $O$. Suppose $M$ is the midpoint of $AB$ and $OM +1 =OA$. Find the area of square $ABCD$.
[b]p8.[/b] How many positive $4$-digit integers have at most $3$ distinct digits?
[b]p9.[/b] Find the sumof all distinct integers obtained by placing $+$ and $-$ signs in the following spaces
$$2\_3\_4\_5$$
[b]p10.[/b] In triangle $ABC$, $\angle A = 2\angle B$. Let $I$ be the intersection of the angle bisectors of $B$ and $C$. Given that $AB = 12$, $BC = 14$,and $C A = 9$, find $AI$ .
[b]p11.[/b] You have a $3\times 3\times 3$ cube in front of you. You are given a knife to cut the cube and you are allowed to move the pieces after each cut before cutting it again. What is the minimumnumber of cuts you need tomake in order to cut the cube into $27$ $1\times 1\times 1$ cubes?
p12. How many ways can you choose $3$ distinct numbers fromthe set $\{1,2,3,...,20\}$ to create a geometric sequence?
[b]p13.[/b] Find the sum of all multiples of $12$ that are less than $10^4$ and contain only $0$ and $4$ as digits.
[b]p14.[/b] What is the smallest positive integer that has a different number of digits in each base from $2$ to $5$?
[b]p15.[/b] Given $3$ real numbers $(a,b,c)$ such that $$\frac{a}{b +c}=\frac{b}{3a+3c}=\frac{c}{a+3b},$$ find all possible values of $\frac{a +b}{c}$.
[b]p16.[/b] Let S be the set of lattice points $(x, y, z)$ in $R^3$ satisfying $0 \le x, y, z \le 2$. How many distinct triangles exist with all three vertices in $S$?
[b]p17.[/b] Let $\oplus$ be an operator such that for any $2$ real numbers $a$ and $b$, $a \oplus b = 20ab -4a -4b +1$. Evaluate $$\frac{1}{10} \oplus \frac19 \oplus \frac18 \oplus \frac17 \oplus \frac16 \oplus \frac15 \oplus \frac14 \oplus \frac13 \oplus \frac12 \oplus 1.$$
[b]p18.[/b] A function $f :N \to N$ satisfies $f ( f (x)) = x$ and $f (2f (2x +16)) = f \left(\frac{1}{x+8} \right)$ for all positive integers $x$. Find $f (2018)$.
[b]p19.[/b] There exists an integer divisor $d$ of $240100490001$ such that $490000 < d < 491000$. Find $d$.
[b]p20.[/b] Let $a$ and $b$ be not necessarily distinct positive integers chosen independently and uniformly at random from the set $\{1,2, 3, ... ,511,512\}$. Let $x = \frac{a}{b}$ . Find the probability that $(-1)^x$ is a real number.
[b]p21[/b]. In $\vartriangle ABC$ we have $AB = 4$, $BC = 6$, and $\angle ABC = 135^o$. $\angle ABC$ is trisected by rays $B_1$ and $B_2$. Ray $B_1$ intersects side $C A$ at point $F$, and ray $B_2$ intersects side $C A$ at point $G$. What is the area of $\vartriangle BFG$?
[b]p22.[/b] A level number is a number which can be expressed as $x \cdot \lfloor x \rfloor \cdot \lceil x \rceil$ where $x$ is a real number. Find the number of positive integers less than or equal to $1000$ which are also level numbers.
[b]p23.[/b] Triangle $\vartriangle ABC$ has sidelengths $AB = 13$, $BC = 14$, $C A = 15$ and circumcenter $O$. Let $D$ be the intersection of $AO$ and $BC$. Compute $BD/DC$.
[b]p24.[/b] Let $f (x) = x^4 -3x^3 +2x^2 +5x -4$ be a quartic polynomial with roots $a,b,c,d$. Compute
$$\left(a+1 +\frac{1}{a} \right)\left(b+1 +\frac{1}{b} \right)\left(c+1 +\frac{1}{c} \right)\left(d+1 +\frac{1}{d} \right).$$
[b]p25.[/b] Triangle $\vartriangle ABC$ has centroid $G$ and circumcenter $O$. Let $D$ be the foot of the altitude from $A$ to $BC$. If $AD = 2018$, $BD =20$, and $CD = 18$, find the area of triangle $\vartriangle DOG$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Romania JBMO TST, P1
Determine the real numbers $x$, $y$, $z > 0$ for which
$xyz \leq \min\left\{4(x - \frac{1}{y}), 4(y - \frac{1}{z}), 4(z - \frac{1}{x})\right\}$
1985 IMO Shortlist, 18
Let $x_1, x_2, \cdots , x_n$ be positive numbers. Prove that
\[\frac{x_1^2}{x_1^2+x_2x_3} + \frac{x_2^2}{x_2^2+x_3x_4} + \cdots +\frac{x_{n-1}^2}{x_{n-1}^2+x_nx_1} +\frac{x_n^2}{x_n^2+x_1x_2} \leq n-1\]
1980 AMC 12/AHSME, 23
Line segments drawn from the vertex opposite the hypotenuse of a right triangle to the points trisecting the hypotenuse have lengths $\sin x$ and $\cos x$, where $x$ is a real number such that $0<x<\frac{\pi}2$. The length of the hypotenuse is
$\text{(A)} \ \frac 43 \qquad \text{(B)} \ \frac 32 \qquad \text{(C)} \ \frac{3\sqrt{5}}{5} \qquad \text{(D)} \ \frac{2\sqrt{5}}{3} \qquad \text{(E)} \ \text{not uniquely determined}$
2011 Today's Calculation Of Integral, 756
Let $a$ be real number. A circle $C$ touches the line $y=-x$ at the point $(a, -a)$ and passes through the point $(0,\ 1).$
Denote by $P$ the center of $C$. When $a$ moves, find the area of the figure enclosed by the locus of $P$ and the line $y=1$.
2009 Irish Math Olympiad, 4
Given an $n$-tuple of numbers $(x_1,x_2,\dots ,x_n)$ where each $x_i=+1$ or $-1$, form a new $n$-tuple $$(x_1x_2,x_2x_3,x_3x_4,\dots ,x_nx_1),$$
and continue to repeat this operation. Show that if $n=2^k$ for some integer $k\ge 1$, then after a certain number of repetitions of the operation, we obtain the $n$-tuple $$(1,1,1,\dots ,1).$$
Kvant 2020, M2626
An infinite number of participants gathered for the Olympiad, who were registered under the numbers $1, 2,\ldots$. It turns out that for every $n = 1, 2,\ldots$ a participant with number $n{}$ has at least $n{}$ friends among the remaining participants (note: friendship is mutual). There is a hotel with an infinite number of double rooms. Prove that the participants can be accommodated in double rooms so that there is a couple of friends in each room.
[i]Proposed by V. Bragin, P. Kozhevnikov[/i]
2010 National Olympiad First Round, 30
If $N=\lfloor \frac{2}{5} \rfloor + \lfloor \frac{2^2}{5} \rfloor +\dots \lfloor \frac{2^{2009}}{5} \rfloor$, what is the remainder when $2^{2010}$ is divided by $N$?
$ \textbf{(A)}\ 5034
\qquad\textbf{(B)}\ 5032
\qquad\textbf{(C)}\ 5031
\qquad\textbf{(D)}\ 5028
\qquad\textbf{(E)}\ 5024
$
2021 Grand Duchy of Lithuania, 1
Prove that for any polynomial $f(x)$ (with real coefficients) there exist polynomials $g(x)$ and $h(x)$ (with real coefficients) such that $f(x) = g(h(x)) - h(g(x))$.
1986 IMO Longlists, 69
Let $AX,BY,CZ$ be three cevians concurrent at an interior point $D$ of a triangle $ABC$. Prove that if two of the quadrangles $DY AZ,DZBX,DXCY$ are circumscribable, so is the third.
2020 Germany Team Selection Test, 2
Let $ABC$ be a triangle. Circle $\Gamma$ passes through $A$, meets segments $AB$ and $AC$ again at points $D$ and $E$ respectively, and intersects segment $BC$ at $F$ and $G$ such that $F$ lies between $B$ and $G$. The tangent to circle $BDF$ at $F$ and the tangent to circle $CEG$ at $G$ meet at point $T$. Suppose that points $A$ and $T$ are distinct. Prove that line $AT$ is parallel to $BC$.
(Nigeria)
LMT Team Rounds 2010-20, A3
Find the value of $\left\lfloor \frac{1}{6}\right\rfloor+\left\lfloor\frac{4}{6}\right\rfloor+\left\lfloor\frac{9}{6}\right\rfloor+\dots+\left\lfloor\frac{1296}{6}\right\rfloor$.
[i]Proposed by Zachary Perry[/i]
2009 Princeton University Math Competition, 6
Find the number of functions $f:\mathbb{Z}\mapsto\mathbb{Z}$ for which $f(h+k)+f(hk)=f(h)f(k)+1$, for all integers $h$ and $k$.
II Soros Olympiad 1995 - 96 (Russia), 9.3
It is known that from these five segments it is possible to form four different right triangles. Find the ratio of the largest segment to the smallest.
1951 Polish MO Finals, 6
Given a circle and a segment $ MN $. Find a point $ C $ on the circle such that the triangle $ ABC $, where $ A $ and $ B $ are the intersection points of the lines $ MC $ and $ NC $ with the circle, is similar to the triangle $ MNC $.
1985 All Soviet Union Mathematical Olympiad, 416
Given big enough sheet of cross-lined paper with the side of the squares equal to $1$. We are allowed to cut it along the lines only. Prove that for every $m>12$ we can cut out a rectangle of the greater than $m$ area such, that it is impossible to cut out a rectangle of $m$ area from it.
2019 LIMIT Category C, Problem 12
$\lim_{x\to0}x\left\lfloor\frac1x\right\rfloor=?$
2016 Canadian Mathematical Olympiad Qualification, 6
Determine all ordered triples of positive integers $(x, y, z)$ such that $\gcd(x+y, y+z, z+x) > \gcd(x, y, z)$.
2021 Bundeswettbewerb Mathematik, 4
Consider a pyramid with a regular $n$-gon as its base. We colour all the segments connecting two of the vertices of the pyramid except for the sides of the base either red or blue.
Show that if $n=9$ then for each such colouring there are three vertices of the pyramid connecting by three segments of the same colour, and that this is not necessarily the case if $n=8$.
1971 Miklós Schweitzer, 9
Given a positive, monotone function $ F(x)$ on $ (0, \infty)$ such that $ F(x)/x$ is monotone nondecreasing and $ F(x)/x^{1+d}$ is monotone nonincreasing for some positive $ d$, let $ \lambda_n >0$ and $ a_n \geq 0 , \;n \geq 1$. Prove that if \[ \sum_{n=1}^{\infty} \lambda_n F \left( a_n \sum _{k=1}^n \frac{\lambda_k}{\lambda_n} \right) < \infty,\] or \[ \sum_{n=1}^{\infty} \lambda_n F \left( \sum _{k=1}^n a_k \frac{\lambda_k}{\lambda_n} \right) < \infty,\] then $ \sum_{n=1}^ {\infty} a_n$ is convergent.
[i]L. Leindler[/i]
2025 Nordic, 3
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. Let $E$ and $F$ be points on the line segments $AC$ and $AB$ respectively such that $AEHF$ is a parallelogram. Prove that $\vert OE \vert = \vert OF \vert$.
1998 French Mathematical Olympiad, Problem 1
A tetrahedron $ABCD$ satisfies the following conditions: the edges $AB,AC$ and $AD$ are pairwise orthogonal, $AB=3$ and $CD=\sqrt2$. Find the minimum possible value of
$$BC^6+BD^6-AC^6-AD^6.$$
2021 BMT, 7
The line $\ell$ passes through vertex$ B$ and the interior of regular hexagon $ABCDEF$. If the distances from $\ell$ to the vertices $A$ and $C$ are $7$ and $4$, respectively, compute the area of hexagon $ABCDEF$.
1993 Taiwan National Olympiad, 3
Find all $ x,y,z\in\mathbb{N}_{0}$ such that $ 7^{x} \plus{} 1 \equal{} 3^{y} \plus{} 5^{z}$.
[i]Alternative formulation:[/i] Solve the equation $ 1\plus{}7^{x}\equal{}3^{y}\plus{}5^{z}$ in nonnegative integers $ x$, $ y$, $ z$.
1998 China National Olympiad, 1
Find all natural numbers $n>3$, such that $2^{2000}$ is divisible by $1+C^1_n+C^2_n+C^3_n$.