Found problems: 85335
1980 Tournament Of Towns, (001) 1
On the circumference of a circle there are red and blue points. One may add a red point and change the colour of both its neighbours (to the other colour) or remove a red point and change the colour of both its previous neighbours. Initially there are two red points. Prove that there is no sequence of allowed operations which leads to the configuration consisting of two blue points.
(K Kazarnovskiy, Moscow)
2023 Bulgarian Spring Mathematical Competition, 11.4
Given is a tree $G$ with $2023$ vertices. The longest path in the graph has length $2n$. A vertex is called good if it has degree at most $6$. Find the smallest possible value of $n$ if there doesn't exist a vertex having $6$ good neighbors.
2007 Poland - Second Round, 1
Polynomial $P(x)$ has integer coefficients. Prove, that if polynomials $P(x)$ and $P(P(P(x)))$ have common real root, they also have a common integer root.
2014 Lithuania Team Selection Test, 6
Circles ω[size=35]1[/size] and ω[size=35]2[/size] have no common point. Where is outerior tangents a and b, interior tangent c. Lines a, b and c touches circle
ω[size=35]1[/size] respectively on points A[size=35]1[/size], B[size=35]1[/size] and C[size=35]1[/size], and circle ω[size=35]2[/size] – respectively
on points A[size=35]2[/size], B[size=35]2[/size] and C[size=35]2[/size]. Prove that triangles A[size=35]1[/size]B[size=35]1[/size]C[size=35]1[/size] and A[size=35]2[/size]B[size=35]2[/size]C[size=35]2[/size]
area ratio is the same as ratio of ω[size=35]1[/size] and ω[size=35]2[/size] radii.
2025 CMIMC Algebra/NT, 8
Let $P(x)=x^4+20x^3+29x^2-666x+2025.$ It is known that $P(x)>0$ for every real $x.$ There is a root $r$ for $P$ in the first quadrant of the complex plane that can be expressed as $r=\frac{1}{2}(a+bi+\sqrt{c+di}),$ where $a,b,c,d$ are integers. Find $a+b+c+d.$
2004 National Olympiad First Round, 7
At least how many weighings of a balanced scale are needed to order four stones with distinct weights from the lightest to the heaviest?
$
\textbf{(A)}\ 4
\qquad\textbf{(B)}\ 5
\qquad\textbf{(C)}\ 6
\qquad\textbf{(D)}\ 7
\qquad\textbf{(E)}\ 8
$
2010 China Team Selection Test, 3
An (unordered) partition $P$ of a positive integer $n$ is an $n$-tuple of nonnegative integers $P=(x_1,x_2,\cdots,x_n)$ such that $\sum_{k=1}^n kx_k=n$. For positive integer $m\leq n$, and a partition $Q=(y_1,y_2,\cdots,y_m)$ of $m$, $Q$ is called compatible to $P$ if $y_i\leq x_i$ for $i=1,2,\cdots,m$. Let $S(n)$ be the number of partitions $P$ of $n$ such that for each odd $m<n$, $m$ has exactly one partition compatible to $P$ and for each even $m<n$, $m$ has exactly two partitions compatible to $P$. Find $S(2010)$.
LMT Team Rounds 2021+, 9
In isosceles trapezoid $ABCD$ with $AB < CD$ and $BC = AD$, the angle bisectors of $\angle A$ and $\angle B$ intersect $CD$ at $E$ and $F$ respectively, and intersect each other outside the trapezoid at $G$. Given that $AD = 8$, $EF = 3$, and $EG = 4$, the area of $ABCD$ can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a, b$, and $c$, with $a$ and $c$ relatively prime and $b$ squarefree. Find $10000a +100b +c$.
2014 International Zhautykov Olympiad, 3
Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle.
[asy]
pair A,B,C,D,E,F,G,H,I,J,K,L;
A=(-4.0,4.0);B=(-1.06,4.34);C=(-0.02,4.46);D=(4.14,4.93);E=(3.81,0.85);F=(3.7,-0.42);
G=(3.49,-3.05);H=(1.37,-2.88);I=(-1.46,-2.65);J=(-2.91,-2.52);K=(-3.14,-1.03);L=(-3.61,1.64);
draw(A--D);draw(D--G);draw(G--J);draw(J--A);
draw(A--G);draw(D--J);
draw(B--I);draw(C--H);draw(E--L);draw(F--K);
pair R,S,T,U,V;
R=(-2.52,2.56);S=(1.91,2.58);T=(-0.63,-0.11);U=(-2.37,-1.94);V=(2.38,-2.06);
label("1",R,N);label("2",S,N);label("3",T,N);label("4",U,N);label("5",V,N);
[/asy]
[i]Proposed by Nairi M. Sedrakyan, Armenia[/i]
2015 Sharygin Geometry Olympiad, P17
Let $O$ be the circumcenter of a triangle $ABC$. The projections of points $D$ and $X$ to the sidelines of the triangle lie on lines $\ell $ and $L $ such that $\ell // XO$. Prove that the angles formed by $L$ and by the diagonals of quadrilateral $ABCD$ are equal.
1993 Mexico National Olympiad, 4
$f(n,k)$ is defined by
(1) $f(n,0) = f(n,n) = 1$ and
(2) $f(n,k) = f(n-1,k-1) + f(n-1,k)$ for $0 < k < n$.
How many times do we need to use (2) to find $f(3991,1993)$?
2006 Harvard-MIT Mathematics Tournament, 6
For how many ordered triplets $(a,b,c)$ of positive integers less than $10$ is the product $a\times b\times c$ divisible by $20$?
2017 Yasinsky Geometry Olympiad, 1
Rectangular sheet of paper $ABCD$ is folded as shown in the figure. Find the rato $DK: AB$, given that $C_1$ is the midpoint of $AD$.
[img]https://3.bp.blogspot.com/-9EkSdxpGnPU/W6dWD82CxwI/AAAAAAAAJHw/iTkEOejlm9U6Dbu427vUJwKMfEOOVn0WwCK4BGAYYCw/s400/Yasinsky%2B2017%2BVIII-IX%2Bp1.png[/img]
2012 Danube Mathematical Competition, 3
Let $ABC$ be a triangle with $\angle BAC = 90^o$. Angle bisector of the $\angle CBA$ intersects the segment $(AB)$ at point $E$. If there exists $D \in (CE)$ so that $\angle DAC = \angle BDE =x^o$ , calculate $x$.
2015 Indonesia MO Shortlist, A4
Determine all functions $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ such that
\[ f(x,y) + f(y,z) + f(z,x) = \max \{ x,y,z \} - \min \{ x,y,z \} \] for every $x,y,z \in \mathbb{R}$
and there exists some real $a$ such that $f(x,a) = f(a,x) $ for every $x \in \mathbb{R}$.
2012 Today's Calculation Of Integral, 792
Answer the following questions:
(1) Let $a$ be positive real number. Find $\lim_{n\to\infty} (1+a^{n})^{\frac{1}{n}}.$
(2) Evaluate $\int_1^{\sqrt{3}} \frac{1}{x^2}\ln \sqrt{1+x^2}dx.$
35 points
2013 JBMO TST - Macedonia, 1
Let $ x $ be a real number such that $ x^3 $ and $ x^2+x $ are rational numbers. Prove that $ x $ is rational.
1998 Harvard-MIT Mathematics Tournament, 5
Evaluate $\displaystyle\lim_{x\to 1}x^{\dfrac{x}{\sin(1-x)}}$.
2018 Saudi Arabia IMO TST, 1
Find all functions $f : Z^+ \to Z^+$ satisfying $f (1) = 2, f (2) \ne 4$, and
max $\{f (m) + f (n), m + n\} |$ min $\{2m + 2n, f (m + n) + 1\}$ for all $m, n \in Z^+$.
2017 HMIC, 5
Let $S$ be the set $\{-1, 1\}^n$, that is, $n$-tuples such that each coordinate is either $-1$ or $1$. For \[s = (s_1, s_2, \ldots, s_n), t = (t_1, t_2, \ldots, t_n) \in \{-1, 1\}^n,\] define $s \odot t = (s_1t_1, s_2t_2, \ldots, s_nt_n)$.
Let $c$ be a positive constant, let $f : S \to \{-1, 1\}$ be a function such that there are at least $(1-c) \cdot 2^{2n}$ pairs $(s, t)$ with $s, t \in S$ such that $f(s \odot t) = f(s)f(t)$. Show that there exists a function $f'$ such that $f'(s \odot t) = f'(s)f'(t)$ for all $s, t \in S$ and $f(s) = f'(s)$ for at least $(1-10c) \cdot 2^n$ values of $s \in S$.
2015 Saudi Arabia JBMO TST, 2
Let $a,b,c$ be positive real numbers. Prove that
$$\frac{a}{\sqrt{(2a+b)(2a+c)}} +\frac{b}{\sqrt{(2b+c)(2b+a)}} +\frac{c}{\sqrt{(2c+a)(2c+b)}} \le 1 $$
2006 AIME Problems, 11
A sequence is defined as follows $a_1=a_2=a_3=1$, and, for all positive integers $n$, $a_{n+3}=a_{n+2}+a_{n+1}+a_n$. Given that $a_{28}=6090307$, $a_{29}=11201821$, and $a_{30}=20603361$, find the remainder when $\displaystyle \sum^{28}_{k=1} a_k$ is divided by 1000.
2012-2013 SDML (Middle School), 5
Seven squares are arranged to form a rectangle as shown below. The side length of the smallest square is $3$ cm. What is the perimeter in centimeters of the rectangle formed by the $7$ squares?
[asy]
draw((0,0)--(57,0)--(57,63)--(0,63)--cycle);
draw((12,27)--(12,39));
draw((24,27)--(24,63));
draw((27,0)--(27,30));
draw((0,27)--(27,27));
draw((24,30)--(57,30));
draw((0,39)--(24,39));
[/asy]
1988 Tournament Of Towns, (201) 4
There are $1988$ towns and $4000$ roads in a certain country (each road connects two towns) . Prove that there is a closed path passing through no more than $20$ towns.
(A. Razborov , Moscow)
2009 Saint Petersburg Mathematical Olympiad, 3
$f(x),g(x),h(x)$ are square trinomials with discriminant, that equals $2$. And $f(x)+g(x),f(x)+h(x),g(x)+h(x)$ are square trinomials with discriminant, that equals $1$. Prove,that $f(x)+g(x)+h(x)$ has not roots.