Found problems: 85335
2016 Spain Mathematical Olympiad, 6
Let $n\geq 2$ an integer. Find the least value of $\gamma$ such that for any positive real numbers $x_1,x_2,...,x_n$ with $x_1+x_2+...+x_n=1$ and any real $y_1+y_2+...+y_n=1$ and $0\leq y_1,y_2,...,y_n\leq \frac{1}{2}$ the following inequality holds:
$$x_1x_2...x_n\leq \gamma \left(x_1y_1+x_2y_2+...+x_ny_n\right)$$
2025 Bangladesh Mathematical Olympiad, P8
Let $a, b, m, n$ be positive integers such that $gcd(a, b) = 1$ and $a > 1$. Prove that if $$a^m+b^m \mid a^n+b^n$$then $m \mid n$.
1965 AMC 12/AHSME, 29
Of $ 28$ students taking at least one subject the number taking Mathematics and English only equals the number taking Mathematics only. No student takes English only or History only, and six students take Mathematics and History, but not English. The number taking English and History only is five times the number taking all three subjects. If the number taking all three subjects is even and non-zero, the number taking English and Mathematics only is:
$ \textbf{(A)}\ 5 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$
2018 CCA Math Bonanza, I3
A Louis Vuitton store in Shanghai had a number of pairs of sunglasses which cost an average of \$$900$ per pair. LiAngelo Ball stole a pair which cost \$$2000$. Afterwards, the average cost of sunglasses in the store dropped to \$$890$ per pair. How many pairs of sunglasses were in the store before LiAngelo Ball stole?
[i]2018 CCA Math Bonanza Individual Round #3[/i]
2015 USAMO, 4
Steve is piling $m\geq 1$ indistinguishable stones on the squares of an $n\times n$ grid. Each square can have an arbitrarily high pile of stones. After he finished piling his stones in some manner, he can then perform [i]stone moves[/i], defined as follows. Consider any four grid squares, which are corners of a rectangle, i.e. in positions $(i, k), (i, l), (j, k), (j, l)$ for some $1\leq i, j, k, l\leq n$, such that $i<j$ and $k<l$. A stone move consists of either removing one stone from each of $(i, k)$ and $(j, l)$ and moving them to $(i, l)$ and $(j, k)$ respectively, or removing one stone from each of $(i, l)$ and $(j, k)$ and moving them to $(i, k)$ and $(j, l)$ respectively.
Two ways of piling the stones are equivalent if they can be obtained from one another by a sequence of stone moves.
How many different non-equivalent ways can Steve pile the stones on the grid?
2002 Mexico National Olympiad, 1
The numbers $1$ to $1024$ are written one per square on a $32 \times 32$ board, so that the first row is $1, 2, ... , 32$, the second row is $33, 34, ... , 64$ and so on. Then the board is divided into four $16 \times 16$ boards and the position of these boards is moved round clockwise, so that
$AB$ goes to $DA$
$DC \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \, CB$
then each of the $16 \times 16 $ boards is divided into four equal $8 \times 8$ parts and each of these is moved around in the same way (within the $ 16 \times 16$ board). Then each of the $8 \times 8$ boards is divided into four $4 \times 4$ parts and these are moved around, then each $4 \times 4$ board is divided into $2 \times 2$ parts which are moved around, and finally the squares of each $2 \times 2$ part are moved around. What numbers end up on the main diagonal (from the top left to bottom right)?
PEN H Problems, 73
Find all pairs $(a,b)$ of positive integers that satisfy the equation \[a^{b^{2}}= b^{a}.\]
2020 Final Mathematical Cup, 4
Find all positive integers $n$ such that for all positive integers $m$, $1<m<n$, relatively prime to $n$, $m$ must be a prime number.
2023 Purple Comet Problems, 6
Find the least positive integer such that the product of its digits is $8! = 8 \cdot 7 \cdot6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$.
2011 Bundeswettbewerb Mathematik, 4
Let $ABCD$ be a tetrahedron that is not degenerate and not necessarily regular, where sides $AD$ and $BC$ have the same length $a$, sides $BD$ and $AC$ have the same length $b$, side $AB$ has length $c_1$ and the side $CD$ has length $c_2$. There is a point $P$ for which the sum of the distances to the vertices of the tetrahedron is minimal. Determine this sum depending on the quantities $a, b, c_1$ and $c_2$.
1988 Putnam, A3
Determine, with proof, the set of real numbers $x$ for which
\[
\sum_{n=1}^\infty \left( \frac{1}{n} \csc \frac{1}{n} - 1 \right)^x
\]
converges.
2002 Miklós Schweitzer, 7
Let the complex function $F(z)$ be regular on the punctuated disk $\{ 0<|z| < R\}$. By a [i]level curve[/i] we mean a component of the level set of $\mathrm{Re}F(z)$, that is, a maximal connected set on which $\mathrm{Re}F(z)$ is constant. Denote by $A(r)$ the union of those level curves that are entirely contained in the punctuated disk $\{ 0<|z|<r\}$. Prove that if the number of components of $A(r)$ has an upper bound independent of $r$ then $F(z)$ can only have a pole type singularity at $0$.
2020 USA EGMO Team Selection Test, 1
Vulcan and Neptune play a turn-based game on an infinite grid of unit squares. Before the game starts, Neptune chooses a finite number of cells to be [i]flooded[/i]. Vulcan is building a [i]levee[/i], which is a subset of unit edges of the grid (called [i]walls[/i]) forming a connected, non-self-intersecting path or loop*.
The game then begins with Vulcan moving first. On each of Vulcan’s turns, he may add up to three new walls to the levee (maintaining the conditions for the levee). On each of Neptune’s turns, every cell which is adjacent to an already flooded cell and with no wall between them becomes flooded as well. Prove that Vulcan can always, in a finite number of turns, build the levee into a closed loop such that all flooded cells are contained in the interior of the loop, regardless of which cells Neptune initially floods.
-----
[size=75]*More formally, there must exist lattice points $\mbox{\footnotesize \(A_0, A_1, \dotsc, A_k\)}$, pairwise distinct except possibly $\mbox{\footnotesize \(A_0 = A_k\)}$, such that the set of walls is exactly $\mbox{\footnotesize \(\{A_0A_1, A_1A_2, \dotsc , A_{k-1}A_k\}\)}$. Once a wall is built it cannot be destroyed; in particular, if the levee is a closed loop (i.e. $\mbox{\footnotesize \(A_0 = A_k\)}$) then Vulcan cannot add more walls. Since each wall has length $\mbox{\footnotesize \(1\)}$, the length of the levee is $\mbox{\footnotesize \(k\)}$.[/size]
2018 Taiwan TST Round 1, 5
Find all functions $ f: \mathbb{N} \to \mathbb{Z} $ satisfying $$ n \mid f\left(m\right) \Longleftrightarrow m \mid \sum\limits_{d \mid n}{f\left(d\right)} $$ holds for all positive integers $ m,n $
2004 IMO Shortlist, 2
Let ${n}$ and $k$ be positive integers. There are given ${n}$ circles in the plane. Every two of them intersect at two distinct points, and all points of intersection they determine are pairwise distinct (i. e. no three circles have a common point). No three circles have a point in common. Each intersection point must be colored with one of $n$ distinct colors so that each color is used at least once and exactly $k$ distinct colors occur on each circle. Find all values of $n\geq 2$ and $k$ for which such a coloring is possible.
[i]Proposed by Horst Sewerin, Germany[/i]
2021 IMO Shortlist, N3
Find all positive integers $n$ with the following property: the $k$ positive divisors of $n$ have a permutation $(d_1,d_2,\ldots,d_k)$ such that for $i=1,2,\ldots,k$, the number $d_1+d_2+\cdots+d_i$ is a perfect square.
MathLinks Contest 3rd, 3
An integer $z$ is said to be a [i]friendly [/i] integer if $|z|$ is not the square of an integer. Determine all integers $n$ such that there exists an infinite number of triplets of distinct friendly integers $(a, b, c)$ such that $n = a+b+c$ and $abc$ is the square of an odd integer.
1992 Swedish Mathematical Competition, 5
A triangle has sides $a, b, c$ with longest side $c$, and circumradius $R$. Show that if $a^2 + b^2 = 2cR$, then the triangle is right-angled.
1958 AMC 12/AHSME, 28
A $ 16$-quart radiator is filled with water. Four quarts are removed and replaced with pure antifreeze liquid. Then four quarts of the mixture are removed and replaced with pure antifreeze. This is done a third and a fourth time. The fractional part of the final mixture that is water is:
$ \textbf{(A)}\ \frac{1}{4}\qquad
\textbf{(B)}\ \frac{81}{256}\qquad
\textbf{(C)}\ \frac{27}{64}\qquad
\textbf{(D)}\ \frac{37}{64}\qquad
\textbf{(E)}\ \frac{175}{256}$
2010 QEDMO 7th, 5
For a natural number $n$, let $D (n)$ be the set of (positive integers) divisors of $n$. Furthermore let $d (n)$ be the number of divisors of $n,$ that is, the cardinality of $D (n)$. For each such $n$, prove the equality $$\sum_{k\in D(n)} d(k)^3=\left( \sum_{k\in D(n)} d(k)\right) ^2.$$
1950 AMC 12/AHSME, 19
If $ m$ men can do a job in $ d$ days, then $ m\plus{}r$ men can do the job in:
$\textbf{(A)}\ d+r\text{ days} \qquad
\textbf{(B)}\ d-r\text{ days} \qquad
\textbf{(C)}\ \dfrac{md}{m+r}\text{ days} \qquad
\textbf{(D)}\ \dfrac{d}{m+r}\text{ days} \qquad
\textbf{(E)}\ \text{None of these}$
2016 Azerbaijan Team Selection Test, 2
Let $ABC$ be a triangle with $\angle{C} = 90^{\circ}$, and let $H$ be the foot of the altitude from $C$. A point $D$ is chosen inside the triangle $CBH$ so that $CH$ bisects $AD$. Let $P$ be the intersection point of the lines $BD$ and $CH$. Let $\omega$ be the semicircle with diameter $BD$ that meets the segment $CB$ at an interior point. A line through $P$ is tangent to $\omega$ at $Q$. Prove that the lines $CQ$ and $AD$ meet on $\omega$.
2021 Auckland Mathematical Olympiad, 5
There are $13$ stones each of which weighs an integer number of grams. It is known that any $12$ of them can be put on two pans of a balance scale, six on each pan, so that they are in equilibrium (i.e., each pan will carry an equal total weight). Prove that all stones weigh the same number of grams.
2020 Purple Comet Problems, 25
A deck of eight cards has cards numbered $1, 2, 3, 4, 5, 6, 7, 8$, in that order, and a deck of five cards has cards numbered $1, 2, 3, 4, 5$, in that order. The two decks are riffle-shuffled together to form a deck with $13$ cards with the cards from each deck in the same order as they were originally. Thus, numbers on the cards might end up in the order $1122334455678$ or $1234512345678$ but not $1223144553678$. Find the number of possible sequences of the $13$ numbers.
2020 BMT Fall, 23
Circle $\Gamma$ has radius $10$, center $O$, and diameter $AB$. Point $C$ lies on $\Gamma$ such that $AC = 12$. Let $P$ be the circumcenter of $\vartriangle AOC$. Line $AP$ intersects $\Gamma$ at $Q$, where $Q$ is different from $A$. Then the value of $\frac{AP}{AQ}$ can be expressed in the form $\frac{m}{n}$, where m and n are relatively prime positive integers. Compute $m + n$.