This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2011 Vietnam Team Selection Test, 2

$A$ is a point lying outside a circle $(O)$. The tangents from $A$ drawn to $(O)$ meet the circle at $B,C.$ Let $P,Q$ be points on the rays $AB, AC$ respectively such that $PQ$ is tangent to $(O).$ The parallel lines drawn through $P,Q$ parallel to $CA, BA,$ respectively meet $BC$ at $E,F,$ respectively. $(a)$ Show that the straight lines $EQ$ always pass through a fixed point $M,$ and $FP$ always pass through a fixed point $N.$ $(b)$ Show that $PM\cdot QN$ is constant.

2013 IMC, 4

Let $\displaystyle{n \geqslant 3}$ and let $\displaystyle{{x_1},{x_2},...,{x_n}}$ be nonnegative real numbers. Define $\displaystyle{A = \sum\limits_{i = 1}^n {{x_i}} ,B = \sum\limits_{i = 1}^n {x_i^2} ,C = \sum\limits_{i = 1}^n {x_i^3} }$. Prove that: \[\displaystyle{\left( {n + 1} \right){A^2}B + \left( {n - 2} \right){B^2} \geqslant {A^4} + \left( {2n - 2} \right)AC}.\] [i]Proposed by Géza Kós, Eötvös University, Budapest.[/i]

2006 Thailand Mathematical Olympiad, 12

Let $a_n = 2^{3n-1} + 3^{6n-2} + 5^{6n-3}$. Compute gcd$(a_1, a_2, ... , a_{25})$

2022 Bangladesh Mathematical Olympiad, 4

Pratyya and Payel have a number each, $n$ and $m$ respectively, where $n>m.$ Everyday, Pratyya multiplies his number by $2$ and then subtracts $2$ from it, and Payel multiplies his number by $2$ and then add $2$ to it. In other words, on the first day their numbers will be $(2n-2)$ and $(2m+2)$ respectively. Find minimum integer $x$ with proof such that if $n-m\geq x,$ then Pratyya's number will be larger than Payel's number everyday.

2004 Nicolae Coculescu, 2

Solve in the real numbers the equation: $$ \cos^2 \frac{(x-2)\pi }{4} +\cos\frac{(x-2)\pi }{3} =\log_3 (x^2-4x+6) $$ [i]Gheorghe Mihai[/i]

1957 AMC 12/AHSME, 4

Tags:
The first step in finding the product $ (3x \plus{} 2)(x \minus{} 5)$ by use of the distributive property in the form $ a(b \plus{} c) \equal{} ab \plus{} ac$ is: $ \textbf{(A)}\ 3x^2 \minus{} 13x \minus{} 10 \qquad \textbf{(B)}\ 3x(x \minus{} 5) \plus{} 2(x \minus{} 5)\qquad \\\textbf{(C)}\ (3x \plus{} 2)x \plus{} (3x \plus{} 2)( \minus{} 5)\qquad \textbf{(D)}\ 3x^2 \minus{} 17x \minus{} 10\qquad \textbf{(E)}\ 3x^2 \plus{} 2x \minus{} 15x \minus{} 10$

1951 AMC 12/AHSME, 5

Tags:
Mr. A owns a home worth $ \$ 10000$. He sells it to Mr. B at a $ 10\%$ profit based on the worth of the house. Mr. B sells the house back to Mr. A at a $ 10\%$ loss. Then: $ \textbf{(A)}\ \text{A comes out even} \qquad\textbf{(B)}\ \text{A makes }\$ 1100\text{ on the deal}\qquad \textbf{(C)}\ \text{A makes }\$ 1000\text{ on the deal}$ $ \textbf{(D)}\ \text{A loses }\$ 900\text{ on the deal} \qquad\textbf{(E)}\ \text{A loses }\$ 1000\text{ on the deal}$

2010 Laurențiu Panaitopol, Tulcea, 2

Let be two $ n\times n $ complex matrices $ A,B $ satisfying the equations $ (A+B)^2=A^2+B^2 $ and $ (A+B)^4=A^4+B^4. $ Show that $ (AB)^2=0. $

PEN G Problems, 29

Let $p(x)=x^{3}+a_{1}x^{2}+a_{2}x+a_{3}$ have rational coefficients and have roots $r_{1}$, $r_{2}$, and $r_{3}$. If $r_{1}-r_{2}$ is rational, must $r_{1}$, $r_{2}$, and $r_{3}$ be rational?

2024 Kazakhstan National Olympiad, 4

Prove that for any positive integers $a$, $b$, $c$, at least one of the numbers $a^3b+1$, $b^3c+1$, $c^3a+1$ is not divisible by $a^2+b^2+c^2$.

2015 Federal Competition For Advanced Students, P2, 4

Let $x,y,z$ be positive real numbers with $x+y+z \ge 3$. Prove that $\frac{1}{x+y+z^2} + \frac{1}{y+z+x^2} + \frac{1}{z+x+y^2} \le 1$ When does equality hold? (Karl Czakler)

1991 China National Olympiad, 2

Tags: function , algebra
Given $I=[0,1]$ and $G=\{(x,y)|x,y \in I\}$, find all functions $f:G\rightarrow I$, such that $\forall x,y,z \in I$ we have: i. $f(f(x,y),z)=f(x,f(y,z))$; ii. $f(x,1)=x, f(1,y)=y$; iii. $f(zx,zy)=z^kf(x,y)$. ($k$ is a positive real number irrelevant to $x,y,z$.)

2022 Kyiv City MO Round 1, Problem 5

$n\ge 2$ teams participated in an underwater polo tournament, each two teams played exactly once against each other. A team receives $2, 1, 0$ points for a win, draw, and loss correspondingly. It turned out that all teams got distinct numbers of points. In the final standings, the teams were ordered by the total number of points. A few days later, organizers realized that the results in the final standings were wrong due to technical issues: in fact, each match that ended with a draw according to them in fact had a winner, and each match with a winner in fact ended with a draw. It turned out that all teams still had distinct number of points! They corrected the standings and ordered them by the total number of points. For which $n$ could the correct order turn out to be the reversed initial order? [i](Proposed by Fedir Yudin)[/i]

2021 Israel TST, 2

Given 10 light switches, each can be in two states: on and off. For each pair of switches there is a light bulb which is on if and only if when both switches are on (45 bulbs in total). The bulbs and the switches are unmarked so it is unclear which switches correspond to which bulb. In the beginning all switches are off. How many flips are needed to find out regarding all bulbs which switches are connected to it? On each step you can flip precisely one switch

2002 National High School Mathematics League, 3

Tags: function
Function $f(x)=\frac{x}{1-2^x}-\frac{x}{2}$ is $\text{(A)}$ an even function, not an odd function. $\text{(B)}$ an odd function, not an even function. $\text{(C)}$ an even function, also an odd function. $\text{(D)}$ neither an even function, nor an odd function.

1998 Romania Team Selection Test, 3

Let $n$ be a positive integer and $\mathcal{P}_n$ be the set of integer polynomials of the form $a_0+a_1x+\ldots +a_nx^n$ where $|a_i|\le 2$ for $i=0,1,\ldots ,n$. Find, for each positive integer $k$, the number of elements of the set $A_n(k)=\{f(k)|f\in \mathcal{P}_n \}$. [i]Marian Andronache[/i]

1996 Baltic Way, 12

Let $S$ be a set of integers containing the numbers $0$ and $1996$. Suppose further that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. Prove that $-2$ belongs to $S$.

1987 India National Olympiad, 1

Given $ m$ and $ n$ as relatively prime positive integers greater than one, show that \[ \frac{\log_{10} m}{\log_{10} n}\] is not a rational number.

2019 Taiwan APMO Preliminary Test, P1

Tags: geometry
In $\triangle ABC$, $\angle B=90^\circ$, segment $AB>BC$. Now we have a $\triangle A_iBC(i=1,2,...,n)$ which is similiar to $\triangle ABC$ (the vertexs of them might not correspond). Find the maximum value of $n+2018$.

2005 QEDMO 1st, 6 (U1)

Tags: inequalities
Prove that for any four real numbers $a$, $b$, $c$, $d$, the inequality \[ \left(a-b\right)\left(b-c\right)\left(c-d\right)\left(d-a\right)+\left(a-c\right)^2\left(b-d\right)^2\geq 0 \] holds. [hide="comment"]This is inequality (350) in: Mihai Onucu Drimbe, [i]Inegalitati, idei si metode[/i], Zalau: Gil, 2003. Posted here only for the sake of completeness; in fact, it is more or less the same as http://www.mathlinks.ro/Forum/viewtopic.php?t=3152 .[/hide] Darij

2023 Macedonian Balkan MO TST, Problem 4

Let $f$ be a non-zero function from the set of positive integers to the set of non-negative integers such that for all positive integers $a$ and $b$ we have $$2f(ab)=(b+1)f(a)+(a+1)f(b).$$ Prove that for every prime number $p$ there exists a prime $q$ and positive integers $x_{1}$, ..., $x_{n}$ and $m \geq 0$ so that $$\frac{f(q^{p})}{f(q)} = (px_{1}+1) \cdot ... \cdot (px_{n}+1) \cdot p^{m},$$ where the integers $px_{1}+1$,..., $px_{n}+1$ are all prime. [i]Authored by Nikola Velov[/i]

1991 Brazil National Olympiad, 3

Given $k > 0$, the sequence $a_n$ is defined by its first two members and \[ a_{n+2} = a_{n+1} + \frac{k}{n}a_n \] a)For which $k$ can we write $a_n$ as a polynomial in $n$? b) For which $k$ can we write $\frac{a_{n+1}}{a_n} = \frac{p(n)}{q(n)}$? ($p,q$ are polynomials in $\mathbb R[X]$).

2023 Novosibirsk Oral Olympiad in Geometry, 6

Let's call a convex figure, the boundary of which consists of two segments and an arc of a circle, a mushroom-gon (see fig.). An arbitrary mushroom-gon is given. Use a compass and straightedge to draw a straight line dividing its area in half. [img]https://cdn.artofproblemsolving.com/attachments/d/e/e541a83a7bb31ba14b3637f82e6a6d1ea51e22.png[/img]

2005 AMC 10, 23

In trapezoid $ ABCD$ we have $ \overline{AB}$ parallel to $ \overline{DC}$, $ E$ as the midpoint of $ \overline{BC}$, and $ F$ as the midpoint of $ \overline{DA}$. The area of $ ABEF$ is twice the area of $ FECD$. What is $ AB/DC$? $ \textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 5\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 8$

1969 IMO Longlists, 8

Find all functions $f$ defined for all $x$ that satisfy the condition $xf(y) + yf(x) = (x + y)f(x)f(y),$ for all $x$ and $y.$ Prove that exactly two of them are continuous.