This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2004 IMO Shortlist, 1

Let $n \geq 3$ be an integer. Let $t_1$, $t_2$, ..., $t_n$ be positive real numbers such that \[n^2 + 1 > \left( t_1 + t_2 + \cdots + t_n \right) \left( \frac{1}{t_1} + \frac{1}{t_2} + \cdots + \frac{1}{t_n} \right).\] Show that $t_i$, $t_j$, $t_k$ are side lengths of a triangle for all $i$, $j$, $k$ with $1 \leq i < j < k \leq n$.

2018 Peru Cono Sur TST, 7

Tags: geometry , locus
Let $ABCD$ be a fixed square and $K$ a variable point on segment $AD$. The square $KLMN$ is constructed such that $B$ is on segment $LM$ and $C$ is on segment $MN$. Let $T$ be the intersection point of lines $LA$ and $ND$. Find the locus of $T$ as $K$ varies along segment $AD$.

2018 Oral Moscow Geometry Olympiad, 5

The circle circumscribed about an acute triangle $ABC$ and the vertex $C$ are fixed. Orthocenter $H$ moves in a circle with center at point $C$. Find the locus of the midpoints of the segments connecting the feet of altitudes drawn from vertices $A$ and $B$.

2008 National Olympiad First Round, 17

Let the vertices $A$ and $C$ of a right triangle $ABC$ be on the arc with center $B$ and radius $20$. A semicircle with diameter $[AB]$ is drawn to the inner region of the arc. The tangent from $C$ to the semicircle touches the semicircle at $D$ other than $B$. Let $CD$ intersect the arc at $F$. What is $|FD|$? $ \textbf{(A)}\ 1 \qquad\textbf{(B)}\ \frac 52 \qquad\textbf{(C)}\ 3 \qquad\textbf{(D)}\ 4 \qquad\textbf{(E)}\ 5 $

1995 Austrian-Polish Competition, 1

Determine all real solutions $(a_1,...,a_n)$ of the following system of equations: $$\begin{cases}a_3 = a_2 + a_1\\ a_4 = a_3 + a_2\\ ...\\ a_n = a_{n-1} + a_{n-2}\\ a_1= a_n +a_{n-1} \\ a_2 = a_1 + a_n \end{cases}$$

2009 Tournament Of Towns, 5

Tags: geometry
Let $XY Z$ be a triangle. The convex hexagon $ABCDEF$ is such that $AB; CD$ and $EF$ are parallel and equal to $XY; Y Z$ and $ZX$, respectively. Prove that area of triangle with vertices at the midpoints of $BC; DE$ and $FA$ is no less than area of triangle $XY Z.$ [i](8 points)[/i]

2001 China Second Round Olympiad, 2

Tags: inequalities
If nonnegative reals $x_1, x_2, \ldots, x_n$ satisfy \[ \sum_{i=1}^n x_i^2 + 2\sum_{1 \leq k < j \leq n} \sqrt{\frac{k}{j}}x_kx_j = 1 \] what are the minimum and maximum values of $\sum_{i=1}^n x_i$?

1967 Putnam, A5

Tags: geometry , distance
Show that in a convex region in the plane whose boundary contains at most a finite number of straight line segments and whose area is greater than $\frac{\pi}{4}$ there is at least one pair of points a unit distance apart.

2010 ELMO Shortlist, 4

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

2021 Dutch IMO TST, 3

Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.

2000 VJIMC, Problem 3

Let $a_1,a_2,\ldots$ be a bounded sequence of reals. Is it true that the fact $$\lim_{N\to\infty}\frac1N\sum_{n=1}^Na_n=b\enspace\text{ and }\enspace\lim_{N\to\infty}\frac1{\log N}\sum_{n=1}^N\frac{a_n}n=c$$implies $b=c$?

2022 Serbia Team Selection Test, P3

Let $n$ be an odd positive integer. Given are $n$ balls - black and white, placed on a circle. For a integer $1\leq k \leq n-1$, call $f(k)$ the number of balls, such that after shifting them with $k$ positions clockwise, their color doesn't change. a) Prove that for all $n$, there is a $k$ with $f(k) \geq \frac{n-1}{2}$. b) Prove that there are infinitely many $n$ (and corresponding colorings for them) such that $f(k)\leq \frac{n-1}{2}$ for all $k$.

2017 QEDMO 15th, 5

Let $F$ be a finite subset of the integer numbers. We define a new subset $s(F)$ in that $a\in Z$ lies in $s (F)$ if and only if exactly one of the numbers $a$ and $a -1$ in $F$. In the same way one gets from $s (F)$ the set $s^2(F) = s (s (F))$ and by $n$-fold application of $s$ then iteratively further subsets $s^n (F)$. Prove there are infinitely many natural numbers $n$ for which $s^n (F) = F\cup \{a + n|a \in F\}$.

2014 Denmark MO - Mohr Contest, 1

Georg chooses three distinct digits among $1, 2, . . . , 9$ and writes them down on three cards. When the cards are laid down next to each other, a three-digit number is formed. Georg tells his mother that the sum of the largest and the second-largest number that can be formed in this manner is $1732$. Can she figure out which three digits Georg has chosen?

2010 Sharygin Geometry Olympiad, 16

A circle touches the sides of an angle with vertex $A$ at points $B$ and $C.$ A line passing through $A$ intersects this circle in points $D$ and $E.$ A chord $BX$ is parallel to $DE.$ Prove that $XC$ passes through the midpoint of the segment $DE.$

1983 IMO Shortlist, 6

Suppose that ${x_1, x_2, \dots , x_n}$ are positive integers for which $x_1 + x_2 + \cdots+ x_n = 2(n + 1)$. Show that there exists an integer $r$ with $0 \leq r \leq n - 1$ for which the following $n - 1$ inequalities hold: \[x_{r+1} + \cdots + x_{r+i} \leq 2i+ 1, \qquad \qquad \forall i, 1 \leq i \leq n - r; \] \[x_{r+1} + \cdots + x_n + x_1 + \cdots+ x_i \leq 2(n - r + i) + 1, \qquad \qquad \forall i, 1 \leq i \leq r - 1.\] Prove that if all the inequalities are strict, then $r$ is unique and that otherwise there are exactly two such $r.$

2006 Vietnam National Olympiad, 2

Let $ABCD$ be a convex quadrilateral. Take an arbitrary point $M$ on the line $AB$, and let $N$ be the point of intersection of the circumcircles of triangles $MAC$ and $MBC$ (different from $M$). Prove that: a) The point $N$ lies on a fixed circle; b) The line $MN$ passes though a fixed point.

2024/2025 TOURNAMENT OF TOWNS, P5

A triangle is constructed on each side of a convex polygon in a manner that the third vertex of each triangle is the meet point of bisectors of the angles adjacent to this side. Prove that these triangles cover all the polygon. Egor Bakaev

2015 Greece Team Selection Test, 2

Consider $111$ distinct points which lie on or in the internal of a circle with radius 1.Prove that there are at least $1998$ segments formed by these points with length $\leq \sqrt{3}$

2021 Nigerian Senior MO Round 3, 5

Let $f(x)=\frac{P(x)}{Q(x)}$. Where $P(x), Q(x)$ are two non constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f(\frac{1}{x})=f(x)+f(\frac{1}{x})$ for all infinitely many values of $x$. a. Show that $deg(P) <deg(Q).$ b. Show that $P'(1)=2Q'(1)- deg(Q). Q(1)$ Here $P'(x)$ denotes the derivatives of $P(x)$ as usual

2009 ISI B.Math Entrance Exam, 9

Let $f(x)=ax^2+bx+c$ where $a,b,c$ are real numbers. Suppose $f(-1),f(0),f(1) \in [-1,1]$. Prove that $|f(x)|\le \frac{3}{2}$ for all $x \in [-1,1]$.

2015 NZMOC Camp Selection Problems, 5

Let $n$ be a positive integer greater than or equal to $6$, and suppose that $a_1, a_2, ...,a_n$ are real numbers such that the sums $a_i + a_j$ for $1 \le i<j\le n$, taken in some order, form consecutive terms of an arithmetic progression $A$, $A + d$, $...$ ,$A + (k-1)d$, where $k = n(n-1)/2$. What are the possible values of $d$?

2012 IMC, 1

Consider a polynomial \[f(x)=x^{2012}+a_{2011}x^{2011}+\dots+a_1x+a_0.\] Albert Einstein and Homer Simpson are playing the following game. In turn, they choose one of the coefficients $a_0,a_1,\dots,a_{2011}$ and assign a real value to it. Albert has the first move. Once a value is assigned to a coefficient, it cannot be changed any more. The game ends after all the coefficients have been assigned values. Homer's goal is to make $f(x)$ divisible by a fixed polynomial $m(x)$ and Albert's goal is to prevent this. (a) Which of the players has a winning strategy if $m(x)=x-2012$? (b) Which of the players has a winning strategy if $m(x)=x^2+1$? [i]Proposed by Fedor Duzhin, Nanyang Technological University.[/i]

2010 Contests, 1

Tags: geometry
Let $D$ be a point inside of equilateral $\triangle ABC$, and $E$ be a point outside of equilateral $\triangle ABC$ such that $m(\widehat{BAD})=m(\widehat{ABD})=m(\widehat{CAE})=m(\widehat{ACE})=5^\circ$. What is $m(\widehat{EDC})$ ? $ \textbf{(A)}\ 45^\circ \qquad\textbf{(B)}\ 40^\circ \qquad\textbf{(C)}\ 35^\circ \qquad\textbf{(D)}\ 30^\circ \qquad\textbf{(E)}\ 25^\circ $

2025 Romanian Master of Mathematics, 1

Let $n > 10$ be an integer, and let $A_1, A_2, \dots, A_n$ be distinct points in the plane such that the distances between the points are pairwise different. Define $f_{10}(j, k)$ to be the 10th smallest of the distances from $A_j$ to $A_1, A_2, \dots, A_k$, excluding $A_j$ if $k \geq j$. Suppose that for all $j$ and $k$ satisfying $11 \leq j \leq k \leq n$, we have $f_{10}(j, j - 1) \geq f_{10}(k, j - 1)$. Prove that $f_{10}(j, n) \geq \frac{1}{2} f_{10}(n, n)$ for all $j$ in the range $1 \leq j \leq n - 1$. [i]Proposed by Morteza Saghafian, Iran[/i]