Found problems: 85335
2022 Tuymaada Olympiad, 7
$M$ is the midpoint of the side $AB$ in an equilateral triangle $\triangle ABC.$ The point $D$ on the side $BC$ is such that $BD : DC = 3 : 1.$ On the line passing through $C$ and parallel to $MD$ there is a point $T$ inside the triangle $\triangle ABC$ such that $\angle CTA = 150.$ Find the $\angle MT D.$
[i](K. Ivanov )[/i]
2000 Turkey MO (2nd round), 1
Let $p$ be a prime number. $T(x)$ is a polynomial with integer coefficients and degree from the set $\{0,1,...,p-1\}$ and such that $T(n) \equiv T(m) (mod p)$ for some integers m and n implies that $ m \equiv n (mod p)$. Determine the maximum possible value of degree of $T(x)$
2020 AMC 10, 12
Triangle $AMC$ is isoceles with $AM = AC$. Medians $\overline{MV}$ and $\overline{CU}$ are perpendicular to each other, and $MV=CU=12$. What is the area of $\triangle AMC?$
[asy]
draw((-4,0)--(4,0)--(0,12)--cycle);
draw((-2,6)--(4,0));
draw((2,6)--(-4,0));
draw((-2,6)--(2,6));
label("M", (-4,0), W);
label("C", (4,0), E);
label("A", (0, 12), N);
label("V", (2, 6), NE);
label("U", (-2, 6), NW);
draw(rightanglemark((-2,6),(0,4),(-4,0),17));
[/asy]
$\textbf{(A) } 48 \qquad \textbf{(B) } 72 \qquad \textbf{(C) } 96 \qquad \textbf{(D) } 144 \qquad \textbf{(E) } 192$
2006 Estonia National Olympiad, 1
Find the greatest possible value of $ sin(cos x) \plus{} cos(sin x)$ and determine all real
numbers x, for which this value is achieved.
2017 Hanoi Open Mathematics Competitions, 11
Let $S$ denote a square of the side-length $7$, and let eight squares of the side-length $3$ be given. Show that $S$ can be covered by those eight small squares.
2017 Finnish National High School Mathematics Comp, 2
Determine $x^2+y^2$ and $x^4+y^4$, when $x^3+y^3=2$ and $x+y=1$
CVM 2020, Problem 1
How many numbers $\overline{abc}$ with $a,b,c>0$ there exists such that
$$\overline{cba}\mid \overline{abc}$$
$\textbf{1.1.}$ The vertical line denotes that $\overline{cba}$ divides $\overline{abc}.$
[i]Proposed by Roger Carranza, Choluteca[/i]
2018 Taiwan TST Round 3, 1
Let $ p \geq 2$ be a prime number. Eduardo and Fernando play the following game making moves alternately: in each move, the current player chooses an index $i$ in the set $\{0,1,2,\ldots, p-1 \}$ that was not chosen before by either of the two players and then chooses an element $a_i$ from the set $\{0,1,2,3,4,5,6,7,8,9\}$. Eduardo has the first move. The game ends after all the indices have been chosen .Then the following number is computed:
$$M=a_0+a_110+a_210^2+\cdots+a_{p-1}10^{p-1}= \sum_{i=0}^{p-1}a_i.10^i$$.
The goal of Eduardo is to make $M$ divisible by $p$, and the goal of Fernando is to prevent this.
Prove that Eduardo has a winning strategy.
[i]Proposed by Amine Natik, Morocco[/i]
2013 AIME Problems, 3
A large candle is $119$ centimeters tall. It is designed to burn down more quickly when it is first lit and more slowly as it approaches its bottom. Specifically, the candle takes $10$ seconds to burn down the first centimeter from the top, $20$ seconds to burn down the second centimeter, and $10k$ seconds to burn down the $k$-th centimeter. Suppose it takes $T$ seconds for the candle to burn down completely. Then $\tfrac{T}{2}$ seconds after it is lit, the candle's height in centimeters will be $h$. Find $10h$.
2014 NIMO Summer Contest, 14
Let $ABC$ be a triangle with circumcenter $O$ and let $X$, $Y$, $Z$ be the midpoints of arcs $BAC$, $ABC$, $ACB$ on its circumcircle. Let $G$ and $I$ denote the centroid of $\triangle XYZ$ and the incenter of $\triangle ABC$.
Given that $AB = 13$, $BC = 14$, $CA = 15$, and $\frac {GO}{GI} = \frac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i]Proposed by Evan Chen[/i]
2019 Romania Team Selection Test, 4
For a natural number $ n, $ a string $ s $ of $ n $ binary digits and a natural number $ k\le n, $ define an $ n,s,k$ [i]-block[/i] as a string of $ k $ consecutive elements from $ s. $ We say that two $ n,s,k\text{-blocks} , $ namely, $ a_1a_2\ldots a_k,b_1b_2\ldots b_k, $ are [i]incompatible[/i] if there exists an $ i\in\{1,2,\ldots ,k\} $ such that $ a_i\neq b_i. $ Also, for two natural numbers $ r\le n, l, $ we say that $ s $ is $ r,l $ [i]-typed[/i] if there are, at most, $ l $ pairwise incompatible $ n,s,r\text{-blocks} . $
Let be a $ 3,7\text{-typed} $ string $ t $ consisting of $ 10000 $ binary digits. Determine the maximum number $ M $ that satisfies the condition that $ t $ is $ 10,M\text{-typed} . $
[i]Cătălin Gherghe[/i]
2023 Lusophon Mathematical Olympiad, 5
Let $ABCDEF$ be a regular hexagon with side 1. Point $X, Y$ are on sides $CD$ and $DE$ respectively, such that the perimeter of $DXY$ is $2$. Determine $\angle XAY$.
1966 IMO Longlists, 44
What is the greatest number of balls of radius $1/2$ that can be placed within a rectangular box of size $10 \times 10 \times 1 \ ?$
2023 Bangladesh Mathematical Olympiad, P1
Find all possible non-negative integer solution ($x,$ $y$) of the following equation-
$$x!+2^y=z!$$
Note: $x!=x\cdot(x-1)!$ and $0!=1$. For example, $5!=5\times4\times3\times2\times1=120$.
2022 HMNT, 5
Suppose $x$ and $y$ are positive real numbers such that $$x+\frac{1}{y}=y+\frac{2}{x}=3.$$ Compute the maximum possible value of $xy.$
2000 Moldova National Olympiad, Problem 6
Find all real values of the parameter $a$ for which the system
\begin{align*}
&1+\left(4x^2-12x+9\right)^2+2^{y+2}=a\\
&\log_3\left(x^2-3x+\frac{117}4\right)+32=a+\log_3(2y+3)
\end{align*}has a unique real solution. Solve the system for these values of $a$.
2008 Portugal MO, 6
Let $n$ be a natural number larger than $2$. Vanessa has $n$ piles of jade stones, and all the piles have a different number of stones. Vanessa can distribute the stones from any pile by the other piles and stay with $n-1$ piles with the same number of stones. She also can distribute the stones from any two piles by the other piles and stay with $n-2$ piles with the same number of stones. Find the smallest possible number of jade's stones that the pile with the largest number of stones can have.
2013 Vietnam National Olympiad, 2
Define a sequence $\{a_n\}$ as: $\left\{\begin{aligned}& a_1=1 \\ & a_{n+1}=3-\frac{a_{n}+2}{2^{a_{n}}}\ \ \text{for} \ n\geq 1.\end{aligned}\right.$
Prove that this sequence has a finite limit as $n\to+\infty$ . Also determine the limit.
2012 Mexico National Olympiad, 5
Some frogs, some red and some others green, are going to move in an $11 \times 11$ grid, according to the following rules. If a frog is located, say, on the square marked with # in the following diagram, then
[list]
[*]If it is red, it can jump to any square marked with an x.
[*]if it is green, it can jump to any square marked with an o.[/list]
\[\begin{tabular}{| p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | p{0.08cm} | l}
\hline
&&&&&&\\ \hline
&&x&&o&&\\ \hline
&o&&&&x&\\ \hline
&&&\small{\#}&&&\\ \hline
&x&&&&o&\\ \hline
&&o&&x&&\\ \hline
&&&&&&\\ \hline
\end{tabular}
\]
We say 2 frogs (of any color) can meet at a square if both can get to the same square in one or more jumps, not neccesarily with the same amount of jumps.
[list=a]
[*]Prove if 6 frogs are placed, then there exist at least 2 that can meet at a square.
[*]For which values of $k$ is it possible to place one green and one red frog such that they can meet at exactly $k$ squares?[/list]
1999 IMC, 6
Let $A$ be a subset of $\mathbb{Z}/n\mathbb{Z}$ with at most $\frac{\ln(n)}{100}$ elements.
Define $f(r)=\sum_{s\in A} e^{\dfrac{2 \pi i r s}{n}}$. Show that for some $r \ne 0$ we have $|f(r)| \geq \frac{|A|}{2}$.
2007 Nicolae Păun, 2
Prove that the real and imaginary part of the number $ \prod_{j=1}^n (j^3+\sqrt{-1}) $ is positive, for any natural numbers $ n. $
[i]Nicolae Mușuroia[/i]
2017 Iran MO (3rd round), 3
Let $k$ be a positive integer. Find all functions $f:\mathbb{N}\to \mathbb{N}$ satisfying the following two conditions:\\
• For infinitely many prime numbers $p$ there exists a positve integer $c$ such that $f(c)=p^k$.\\
• For all positive integers $m$ and $n$, $f(m)+f(n)$ divides $f(m+n)$.
1982 Poland - Second Round, 3
Prove that for every natural number $ n \geq 2 $ the inequality holds
$$
\log_n 2 \cdot \log_n 4 \cdot \log_n 6 \ldots \log_n (2n - 2) \leq 1.$$
2009 Mexico National Olympiad, 3
Let $a$, $b$, and $c$ be positive numbers satisfying $abc=1$. Show that
\[\frac{a^3}{a^3+2}+\frac{b^3}{b^3+2}+\frac{c^3}{c^3+2}\ge1\text{ and }\frac1{a^3+2}+\frac1{b^3+2}+\frac1{c^3+2}\le1\]
2000 IMO Shortlist, 5
The tangents at $B$ and $A$ to the circumcircle of an acute angled triangle $ABC$ meet the tangent at $C$ at $T$ and $U$ respectively. $AT$ meets $BC$ at $P$, and $Q$ is the midpoint of $AP$; $BU$ meets $CA$ at $R$, and $S$ is the midpoint of $BR$. Prove that $\angle ABQ=\angle BAS$. Determine, in terms of ratios of side lengths, the triangles for which this angle is a maximum.