This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2016 BMT Spring, 12

Tags: algebra
What is the number of nondecreasing positive integer sequences of length $7$ whose last term is at most $9$?

2020 SJMO, 3

Tags: geometry
Let $O$ and $\Omega$ denote the circumcenter and circumcircle, respectively, of scalene triangle $\triangle ABC$. Furthermore, let $M$ be the midpoint of side $BC$. The tangent to $\Omega$ at $A$ intersects $BC$ and $OM$ at points $X$ and $Y$, respectively. If the circumcircle of triangle $\triangle OXY$ intersects $\Omega$ at two distinct points $P$ and $Q$, prove that $PQ$ bisects $\overline{AM}$. [i]Proposed by Andrew Wen[/i]

PEN N Problems, 10

Let $a,b$ be integers greater than 2. Prove that there exists a positive integer $k$ and a finite sequence $n_1, n_2, \dots, n_k$ of positive integers such that $n_1 = a$, $n_k = b$, and $n_i n_{i+1}$ is divisible by $n_i + n_{i+1}$ for each $i$ ($1 \leq i < k$).

2010 Belarus Team Selection Test, 4.1

Tags: algebra , subset
Find all finite sets $M \subset R, |M| \ge 2$, satisfying the following condition: [i]for all $a, b \in M, a \ne b$, the number $a^3 - \frac{4}{9}b$ also belongs to $M$. [/i] (I. Voronovich)

2023-24 IOQM India, 13

Tags:
The ex-radii of a triangle are $10\frac{1}{2}, 12$ and $14$. If the sides of the triangle are the roots of the cubic $x^3-px^2+qx-r=0$, where $p, q,r $ are integers , find the nearest integer to $\sqrt{p+q+r}.$

1967 IMO Shortlist, 2

Let $n$ and $k$ be positive integers such that $1 \leq n \leq N+1$, $1 \leq k \leq N+1$. Show that: \[ \min_{n \neq k} |\sin n - \sin k| < \frac{2}{N}. \]

2010 Contests, 1

The integer number $n > 1$ is given and a set $S \subset \{0, 1, 2, \ldots, n-1\}$ with $|S| > \frac{3}{4} n$. Prove that there exist integer numbers $a, b, c$ such that the remainders after the division by $n$ of the numbers: \[a, b, c, a+b, b+c, c+a, a+b+c\] belong to $S$.

2013 China Girls Math Olympiad, 7

As shown in the figure, $\odot O_1$ and $\odot O_2$ touches each other externally at a point $T$, quadrilateral $ABCD$ is inscribed in $\odot O_1$, and the lines $DA$, $CB$ are tangent to $\odot O_2$ at points $E$ and $F$ respectively. Line $BN$ bisects $\angle ABF$ and meets segment $EF$ at $N$. Line $FT$ meets the arc $\widehat{AT}$ (not passing through the point $B$) at another point $M$ different from $A$. Prove that $M$ is the circumcenter of $\triangle BCN$.

2024 New Zealand MO, 4

Determine all positive integers $n$ less than $2024$ such that for all positive integers $x$, the greatest common divisor of $9x + 1$ and $nx+1$ is $1$.

2024 CCA Math Bonanza, T4

Tags:
Triangle $ABC$ has $BC<AC$ and circumradius $8$. Let $O$ be the circumcenter of $\triangle ABC$, $M$ be the midpoint of minor arc $AB$, and $C'$ be the reflection of $C$ across $OM$. If $AB$ bisects $\angle OAM$, and $\angle COC' = 120^\circ$, find the square of the area of the convex pentagon $CC'AMB$. [i]Team #4[/i]

2009 Purple Comet Problems, 5

Tags:
Find $n$ so that $(4^{n+7})^3=(2^{n+23})^4.$

2010 Indonesia TST, 2

Circles $ \Gamma_1$ and $ \Gamma_2$ are internally tangent to circle $ \Gamma$ at $ P$ and $ Q$, respectively. Let $ P_1$ and $ Q_1$ are on $ \Gamma_1$ and $ \Gamma_2$ respectively such that $ P_1Q_1$ is the common tangent of $ P_1$ and $ Q_1$. Assume that $ \Gamma_1$ and $ \Gamma_2$ intersect at $ R$ and $ R_1$. Define $ O_1,O_2,O_3$ as the intersection of $ PQ$ and $ P_1Q_1$, the intersection of $ PR$ and $ P_1R_1$, and the intersection $ QR$ and $ Q_1R_1$. Prove that the points $ O_1,O_2,O_3$ are collinear. [i]Rudi Adha Prihandoko, Bandung[/i]

2018 239 Open Mathematical Olympiad, 8-9.6

Petya wrote down 100 positive integers $n, n+1, \ldots, n+99$, and Vasya wrote down 99 positive integers $m, m-1, \ldots, m-98$. It turned out that for each of Petya's numbers, there is a number from Vasya that divides it. Prove that $m>n^3/10, 000, 000$. [i]Proposed by Ilya Bogdanov[/i]

2022 Novosibirsk Oral Olympiad in Geometry, 4

Tags: angle , geometry
In triangle $ABC$, angle $C$ is three times the angle $A$, and side $AB$ is twice the side $BC$. What can be the angle $ABC$?

2011-2012 SDML (High School), 6

Tags:
Luna and Sam have access to a windowsill with three plants. On the morning of January $1$, $2011$, the plants were sitting in the order of cactus, dieffenbachia, and orchid, from left to right. Every afternoon, when Luna waters the plants, she swaps the two plants sitting on the left and in the center. Every evening, when Sam waters the plants, he swaps the two plants sitting on the right and in the center. What was the order of the plants on the morning of January $1$, $2012$, $365$ days later, from left to right? $\text{(A) cactus, orchid, dieffenbachia}\qquad\text{(B) dieffenbachia, cactus, orchid}$ $\text{(C) dieffenbachia, orchid, cactus}\qquad\text{(D) orchid, dieffenbachia, cactus}$ $\text{(E) orchid, cactus, dieffenbachia}$

2019 Regional Olympiad of Mexico Center Zone, 1

Let $a$, $b$, and $c $ be integers greater than zero. Show that the numbers $$2a ^ 2 + b ^ 2 + 3 \,\,, 2b ^ 2 + c ^ 2 + 3\,\,, 2c ^ 2 + a ^ 2 + 3 $$ cannot be all perfect squares.

2000 National Olympiad First Round, 5

$[BD]$ is a median of $\triangle ABC$. $m(\widehat{ABD})=90^\circ$, $|AB|=2$, and $|AC|=6$. $|BC|=?$ $ \textbf{(A)}\ 3 \qquad\textbf{(B)}\ 3\sqrt2 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 4\sqrt2 \qquad\textbf{(E)}\ 2\sqrt6 $

1965 German National Olympiad, 1

For a given positive real parameter $p$, solve the equation $\sqrt{p+x}+\sqrt{p-x }= x$.

2017 Spain Mathematical Olympiad, 3

Tags: algebra
Let $p$ be an odd prime and $S_{q} = \frac{1}{2*3*4} + \frac{1}{5*6*7} + ... + \frac{1}{q(q+1)(q+2)}$, where $q = \frac{3p-5}{2}$. We write $\frac{1}{2}-2S_{q}$ in the form $\frac{m}{n}$, where $m$ and $n$ are integers. Prove that $m \equiv n (mod p)$

1905 Eotvos Mathematical Competition, 3

Tags: geometry
Let $C_1$ be any point on side $AB$ of a triangle $ABC$, and draw $C_1C$. Let $A_1$ be the intersection of $BC$ extended and the line through $A$ parallel to $CC_1$, similarly let $B_1$ be the intersection of $AC$ extended and the line through $B$ parallel to $CC_1$. Prove that $$\frac{1}{AA_1}+\frac{1}{BB_1}=\frac{1}{CC_1}.$$

2016 South East Mathematical Olympiad, 1

Tags: inequalities
The sequence $(a_n)$ is defined by $a_1=1,a_2=\frac{1}{2}$,$$n(n+1) a_{n+1}a_{n}+na_{n}a_{n-1}=(n+1)^2a_{n+1}a_{n-1}(n\ge 2).$$ Prove that $$\frac{2}{n+1}<\sqrt[n]{a_n}<\frac{1}{\sqrt{n}}(n\ge 3).$$

1930 Eotvos Mathematical Competition, 3

Inside an acute triangle $ABC$ is a point $P$ that is not the circumcenter. Prove that among the segments $AP$, $BP$ and $CP$, at least one is longer and at least one is shorter than the circumradius of $ABC$.

2021 Durer Math Competition Finals, 3

Let $A$ and $B$ different points of a circle $k$ centered at $O$ in such a way such that $AB$ is not a diagonal of $k$. Furthermore, let $X$ be an arbitrary inner point of the segment $AB$. Let $k_1$ be the circle that passes through the points $A$ and $X$, and $A$ is the only common point of $k$ and $k_1$. Similarly, let $k_2$ be the circle that passes through the points $B$ and $X$, and $B$ is the only common point of $k$ and $k_2$. Let $M$ be the second intersection point of $k_1$ and $k_2$. Let $Q$ denote the center of circumscribed circle of the triangle $AOB$. Let $O_1$ and $O_2$ be the centers of $k_1$ and $k_2$. Show that the points $M,O,O_1,O_2,Q$ are on a circle.

1999 Baltic Way, 1

Tags: algebra
Determine all real numbers $a,b,c,d$ that satisfy the following equations \[\begin{cases} abc + ab + bc + ca + a + b + c = 1\\ bcd + bc + cd + db + b + c + d = 9\\ cda + cd + da + ac + c + d + a = 9\\ dab + da + ab + bd + d + a + b = 9\end{cases}\]

2007 All-Russian Olympiad, 8

Dima has written number $ 1/80!,\,1/81!,\,\dots,1/99!$ on $ 20$ infinite pieces of papers as decimal fractions (the following is written on the last piece: $ \frac {1}{99!} \equal{} 0{,}{00\dots 00}10715\dots$, 155 0-s before 1). Sasha wants to cut a fragment of $ N$ consecutive digits from one of pieces without the comma. For which maximal $ N$ he may do it so that Dima may not guess, from which piece Sasha has cut his fragment? [i]A. Golovanov[/i]