Found problems: 85335
2016 Online Math Open Problems, 16
For her zeroth project at Magic School, Emilia needs to grow six perfectly-shaped apple trees. First she plants six tree saplings at the end of Day $0$. On each day afterwards, Emilia attempts to use her magic to turn each sapling into a perfectly-shaped apple tree, and for each sapling she succeeds in turning it into a perfectly-shaped apple tree that day with a probability of $\frac{1}{2}$. (Once a sapling is turned into a perfectly-shaped apple tree, it will stay a perfectly-shaped apple tree.) The expected number of days it will take Emilia to obtain six perfectly-shaped apple trees is $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $100m+n$.
[i]Proposed by Yannick Yao[/i]
EMCC Team Rounds, 2011
[b]p1.[/b] Velociraptor $A$ is located at $x = 10$ on the number line and runs at $4$ units per second. Velociraptor $B$ is located at $x = -10$ on the number line and runs at $3$ units per second. If the velociraptors run towards each other, at what point do they meet?
[b]p2.[/b] Let $n$ be a positive integer. There are $n$ non-overlapping circles in a plane with radii $1, 2, ... , n$. The total area that they enclose is at least $100$. Find the minimum possible value of $n$.
[b]p3.[/b] How many integers between $1$ and $50$, inclusive, are divisible by $4$ but not $6$?
[b]p4.[/b] Let $a \star b = 1 + \frac{b}{a}$. Evaluate $((((((1 \star 1) \star 1) \star 1) \star 1) \star 1) \star 1) \star 1$.
[b]p5.[/b] In acute triangle $ABC$, $D$ and $E$ are points inside triangle $ABC$ such that $DE \parallel BC$, $B$ is closer to $D$ than it is to $E$, $\angle AED = 80^o$ , $\angle ABD = 10^o$ , and $\angle CBD = 40^o$. Find the measure of $\angle BAE$, in degrees.
[b]p6. [/b]Al is at $(0, 0)$. He wants to get to $(4, 4)$, but there is a building in the shape of a square with vertices at $(1, 1)$, $(1, 2)$, $(2, 2)$, and $(2, 1)$. Al cannot walk inside the building. If Al is not restricted to staying on grid lines, what is the shortest distance he can walk to get to his destination?
[b]p7. [/b]Point $A = (1, 211)$ and point $B = (b, 2011)$ for some integer $b$. For how many values of $b$ is the slope of $AB$ an integer?
[b]p8.[/b] A palindrome is a number that reads the same forwards and backwards. For example, $1$, $11$ and $141$ are all palindromes. How many palindromes between $1$ and 1000 are divisible by $11$?
[b]p9.[/b] Suppose $x, y, z$ are real numbers that satisfy: $$x + y - z = 5$$
$$y + z - x = 7$$
$$z + x - y = 9$$ Find $x^2 + y^2 + z^2$.
[b]p10.[/b] In triangle $ABC$, $AB = 3$ and $AC = 4$. The bisector of angle $A$ meets $BC$ at $D$. The line through $D$ perpendicular to $AD$ intersects lines $AB$ and $AC$ at $F$ and $E$, respectively. Compute $EC - FB$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/2/7/e26fbaeb7d1f39cb8d5611c6a466add881ba0d.png[/img]
[b]p11.[/b] Bob has a six-sided die with a number written on each face such that the sums of the numbers written on each pair of opposite faces are equal to each other. Suppose that the numbers $109$, $131$, and $135$ are written on three faces which share a corner. Determine the maximum possible sum of the numbers on the three remaining faces, given that all three are positive primes less than $200$.
[b]p12.[/b] Let $d$ be a number chosen at random from the set $\{142, 143, ..., 198\}$. What is the probability that the area of a rectangle with perimeter $400$ and diagonal length $d$ is an integer?
[b]p13.[/b] There are $3$ congruent circles such that each circle passes through the centers of the other two. Suppose that $A, B$, and $C$ are points on the circles such that each circle has exactly one of $A, B$, or $C$ on it and triangle $ABC$ is equilateral. Find the ratio of the maximum possible area of $ABC$ to the minimum possible area of $ABC$. (See the following diagram.)
[img]https://cdn.artofproblemsolving.com/attachments/4/c/162554fcc6aa21ce3df3ce6a446357f0516f5d.png[/img]
[b]p14.[/b] Let $k$ and $m$ be constants such that for all triples $(a, b, c)$ of positive real numbers,
$$\sqrt{ \frac{4}{a^2}+\frac{36}{b^2}+\frac{9}{c^2}+\frac{k}{ab} }=\left| \frac{2}{a}+\frac{6}{b}+\frac{3}{c}\right|$$
if and only if $am^2 + bm + c = 0$. Find $k$.
[b]p15.[/b] A bored student named Abraham is writing $n$ numbers $a_1, a_2, ..., a_n$. The value of each number is either $1, 2$, or $3$; that is, $a_i$ is $1, 2$ or $3$ for $1 \le i \le n$. Abraham notices that the ordered triples $$(a_1, a_2, a_3), (a_2, a_3, a_4), ..., (a_{n-2}, a_{n-1}, a_n), (a_{n-1}, a_n, a_1), (a_n, a_1, a_2)$$ are distinct from each other. What is the maximum possible value of $n$? Give the answer n, along with an example of such a sequence. Write your answer as an ordered pair. (For example, if the answer were $5$, you might write $(5, 12311)$.)
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2003 National High School Mathematics League, 7
The solution set for inequality $|x|^3-2x^2-4|x|+3<0$ is________.
2010 AMC 8, 15
A jar contains $5$ different colors of gumdrops. $30\%$ are blue, $20\%$ are brown, $15\%$ red, $10\%$ yellow, and the other $30$ gumdrops are green. If half of the blue gumdrops are replaced with brown gumdrops, how many gumdrops will be brown?
$ \textbf{(A)}\ 35 \qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 42\qquad\textbf{(D)}\ 48\qquad\textbf{(E)}\ 64 $
1952 Poland - Second Round, 2
Prove that if $ a $, $ b $, $ c $, $ d $ are the sides of a quadrilateral in which a circle can be circumscribed and a circle can be inscribed in it, then the area $ S $ of the quadrilateral is given by $$S = \sqrt{abcd}.$$
2023 USA TSTST, 4
Let $n\ge 3$ be an integer and let $K_n$ be the complete graph on $n$ vertices. Each edge of $K_n$ is colored either red, green, or blue. Let $A$ denote the number of triangles in $K_n$ with all edges of the same color, and let $B$ denote the number of triangles in $K_n$ with all edges of different colors. Prove
\[ B\le 2A+\frac{n(n-1)}{3}.\]
(The [i]complete graph[/i] on $n$ vertices is the graph on $n$ vertices with $\tbinom n2$ edges, with exactly one edge joining every pair of vertices. A [i]triangle[/i] consists of the set of $\tbinom 32=3$ edges between $3$ of these $n$ vertices.)
[i]Proposed by Ankan Bhattacharya[/i]
2021 USA TSTST, 5
Let $T$ be a tree on $n$ vertices with exactly $k$ leaves. Suppose that there exists a subset of at least $\frac{n+k-1}{2}$ vertices of $T$, no two of which are adjacent. Show that the longest path in $T$ contains an even number of edges. [hide=*]A tree is a connected graph with no cycles. A leaf is a vertex of degree 1[/hide]
[i]Vincent Huang[/i]
2006 Lithuania National Olympiad, 3
Show that if $a+b+c=0$ then $(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b})(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c})=9$.
2005 Thailand Mathematical Olympiad, 15
A function $f : R \to R$ satisfy the functional equation $f(x + 2y) + 2f(y - 2x) = 3x -4y + 6$ for all reals $x, y$. Compute $f(2548)$.
2021/2022 Tournament of Towns, P5
What is the maximal possible number of roots on the interval (0,1) for a polynomial of degree 2022 with integer coefficients and with the leading coefficient equal to 1?
2023 Bulgarian Autumn Math Competition, 9.4
Let $p, q$ be coprime integers, such that $|\frac{p} {q}| \leq 1$. For which $p, q$, there exist even integers $b_1, b_2, \ldots, b_n$, such that $$\frac{p} {q}=\frac{1}{b_1+\frac{1}{b_2+\frac{1}{b_3+\ldots}}}? $$
2004 Thailand Mathematical Olympiad, 13
Compute the remainder when $29^{30 }+ 31^{28} + 28! \cdot 30!$ is divided by $29 \cdot 31$.
2021 Czech and Slovak Olympiad III A, 3
The different non-zero real numbers a, b, c satisfy the set equality $\{a + b, b + c, c + a\} = \{ab, bc, ca\}$.
Prove that the set equality $\{a, b, c\} = \{a^2 -2, b^2 - 2, c^2 - 2\}$ also holds.
.
(Josef Tkadlec)
2010 Tuymaada Olympiad, 4
Prove that for any positive real number $\alpha$, the number $\lfloor\alpha n^2\rfloor$ is even for infinitely many positive integers $n$.
2007 iTest Tournament of Champions, 2
The area of triangle $ABC$ is $2007$. One of its sides has length $18$, and the tangent of the angle opposite that side is $2007/24832$. When the altitude is dropped to the side of length $18$, it cuts that side into two segments. Find the sum of the squares of those two segments.
2019 Saudi Arabia JBMO TST, 4
Find all positive integers $k>1$, such that there exist positive integer $n$, such that the number $A=17^{18n}+4.17^{2n}+7.19^{5n}$ is product of $k$ consecutive positive integers.
1967 IMO Longlists, 25
Three disks of diameter $d$ are touching a sphere in their centers. Besides, every disk touches the other two disks. How to choose the radius $R$ of the sphere in order that axis of the whole figure has an angle of $60^\circ$ with the line connecting the center of the sphere with the point of the disks which is at the largest distance from the axis ? (The axis of the figure is the line having the property that rotation of the figure of $120^\circ$ around that line brings the figure in the initial position. Disks are all on one side of the plane, passing through the center of the sphere and orthogonal to the axis).
2019 Online Math Open Problems, 20
Let $ABC$ be a triangle with $AB=4$, $BC=5$, and $CA=6$. Suppose $X$ and $Y$ are points such that
[list]
[*] $BC$ and $XY$ are parallel
[*] $BX$ and $CY$ intersect at a point $P$ on the circumcircle of $\triangle{ABC}$
[*] the circumcircles of $\triangle{BCX}$ and $\triangle{BCY}$ are tangent to $AB$ and $AC$, respectively.
[/list]
Then $AP^2$ can be written in the form $\frac{p}{q}$ for relatively prime positive integers $p$ and $q$. Compute $100p+q$.
[i]Proposed by Tristan Shin[/i]
2020 Greece Junior Math Olympiad, 2
Let $ABC$ be an acute-angled triangle with $AB<AC$. Let $D$ be the midpoint of side $BC$ and $BE,CZ$ be the altitudes of the triangle $ABC$. Line $ZE$ intersects line $BC$ at point $O$.
(i) Find all the angles of the triangle $ZDE$ in terms of angle $\angle A$ of the triangle $ABC$
(ii) Find the angle $\angle BOZ$ in terms of angles $\angle B$ and $\angle C$ of the triangle $ABC$
2012 Romania National Olympiad, 3
[color=darkred]Let $a,b\in\mathbb{R}$ with $0<a<b$ . Prove that:
[list]
[b]a)[/b] $2\sqrt {ab}\le\frac {x+y+z}3+\frac {ab}{\sqrt[3]{xyz}}\le a+b$ , for $x,y,z\in [a,b]\, .$
[b]b)[/b] $\left\{\frac {x+y+z}3+\frac {ab}{\sqrt[3]{xyz}}\, |\, x,y,z\in [a,b]\right\}=[2\sqrt {ab},a+b]\, .$
[/list][/color]
1956 AMC 12/AHSME, 18
If $ 10^{2y} \equal{} 25$, then $ 10^{ \minus{} y}$ equals:
$ \textbf{(A)}\ \minus{} \frac {1}{5} \qquad\textbf{(B)}\ \frac {1}{625} \qquad\textbf{(C)}\ \frac {1}{50} \qquad\textbf{(D)}\ \frac {1}{25} \qquad\textbf{(E)}\ \frac {1}{5}$
1990 All Soviet Union Mathematical Olympiad, 513
A graph has $30$ points and each point has $6$ edges. Find the total number of triples such that each pair of points is joined or each pair of points is not joined.
2016 Korea USCM, 7
$M$ is a postive real and $f:[0,\infty)\to[0,M]$ is a continuous function such that
$$\int_0^\infty (1+x)f(x) dx<\infty$$
Then, prove the following inequality.
$$\left(\int_0^\infty f(x) dx \right)^2 \leq 4M \int_0^\infty x f(x) dx$$
(@below, Thank you. I fixed.)
1972 Swedish Mathematical Competition, 4
Put $x = \log_{10} 2$, $y = \log_{10} 3$. Then $15 < 16$ implies $1 - x + y < 4x$, so $1 + y < 5x$.
Derive similar inequalities from $80 < 81$ and $243 < 250$. Hence show that \[
0.47 < \log_{10} 3 < 0.482.
\]
2006 Miklós Schweitzer, 2
Let T be a finite tree graph that has more than one vertex. Let s be the largest number of vertices of a subtree $X \subset T$ for which every vertex of X has a neighbor other than X. Let t be the smallest positive integer for which each edge of T is contained in exactly t stars, and each vertex of T is contained in at most 2t - 1 stars. (That is, the stars can be represented by multiplicity.) Prove that s = t.
Note: a star of T is a vertex with degree $\geq$ 3 , including its neighouring edges and vertices.