This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2013 Harvard-MIT Mathematics Tournament, 5

Tags: geometry
In triangle $ABC$ , $\angle A = 45^o$ and $M$ is the midpoint of $\overline{BC}$. $\overline{AM}$ intersects the circumcircle of $ABC$ for the second time at $D$, and $AM = 2MD$. Find $cos\angle AOD$, where $O$ is the circumcenter of $ABC$.

1992 IMO Longlists, 33

Let $a, b, c$ be positive real numbers and $p, q, r$ complex numbers. Let $S$ be the set of all solutions $(x, y, z)$ in $\mathbb C$ of the system of simultaneous equations \[ax + by + cz = p,\]\[ax2 + by2 + cz2 = q,\]\[ax3 + bx3 + cx3 = r.\] Prove that $S$ has at most six elements.

2022 Azerbaijan JBMO TST, G3

In acute, scalene Triangle $ABC$, $H$ is orthocenter,$ BD$ and $CE$ are heights. $X,Y$ are reflection of $A$ from $D$,$E$ respectively such that the points$ X,Y$ are on segments $DC$ and $EB$. The intersection of circles $ HXY$ and $ADE$ is $F.$ ( $F \neq H$). Prove that$ AF$ intersects middle point of $BC$. ( $M$ in the diagram is Midpoint of $BC$)

2022 Stars of Mathematics, 4

Let $a{}$ be an even positive integer which is not a power of two. Prove that at least one of $2^{2^n}+1$ and $a^{2^n}+1$ is composite, for infinitely many positive integers $n$. [i]Bojan Bašić[/i]

2011 Spain Mathematical Olympiad, 3

The sequence $S_0,S_1,S_2,\ldots$ is defined by[list][*]$S_n=1$ for $0\le n\le 2011$, and [*]$S_{n+2012}=S_{n+2011}+S_n$ for $n\ge 0$.[/list]Prove that $S_{2011a}-S_a$ is a multiple of $2011$ for all nonnegative integers $a$.

2009 Czech and Slovak Olympiad III A, 3

Tags: inequalities
Find the least value of $x>0$ such that for all positive real numbers $a,b,c,d$ satisfying $abcd=1$, the inequality $a^x+b^x+c^x+d^x\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}$ is true.

2009 Harvard-MIT Mathematics Tournament, 5

Tags: function
Let $s(n)$ denote the number of $1$'s in the binary representation of $n$. Compute \[ \frac{1}{255}\sum_{0\leq n<16}2^n(-1)^{s(n)}. \]

2007 India IMO Training Camp, 1

Show that in a non-equilateral triangle, the following statements are equivalent: $(a)$ The angles of the triangle are in arithmetic progression. $(b)$ The common tangent to the Nine-point circle and the Incircle is parallel to the Euler Line.

2012 Sharygin Geometry Olympiad, 5

A quadrilateral $ABCD$ with perpendicular diagonals is inscribed into a circle $\omega$. Two arcs $\alpha$ and $\beta$ with diameters AB and $CD$ lie outside $\omega$. Consider two crescents formed by the circle $\omega$ and the arcs $\alpha$ and $\beta$ (see Figure). Prove that the maximal radii of the circles inscribed into these crescents are equal. (F.Nilov)

2021 Saudi Arabia BMO TST, 3

Let $x$, $y$ and $z$ be odd positive integers such that $\gcd \ (x, y, z) = 1$ and the sum $x^2 +y^2 +z^2$ is divisible by $x+y+z$. Prove that $x+y+z- 2$ is not divisible by $3$.

2024/2025 TOURNAMENT OF TOWNS, P7

Several napkins of equal size and of shape of a unit disc were placed on a table (with overlappings). Is it always possible to hammer several point-sized nails so that all the napkins will be thus attached to the table with the same number of nails? (The nails cannot be hammered into the borders of the discs). Vladimir Dolnikov, Pavel Kozhevnikov

2007 ISI B.Math Entrance Exam, 3

For a natural number $n>1$ , consider the $n-1$ points on the unit circle $e^{\frac{2\pi ik}{n}}\ (k=1,2,...,n-1) $ . Show that the product of the distances of these points from $1$ is $n$.

2022 Sharygin Geometry Olympiad, 3

Let $CD$ be an altitude of right-angled triangle $ABC$ with $\angle C = 90$. Regular triangles$ AED$ and $CFD$ are such that $E$ lies on the same side from $AB$ as $C$, and $F$ lies on the same side from $CD$ as $B$. The line $EF$ meets $AC$ at $L$. Prove that $FL = CL + LD$

1983 IMO Shortlist, 2

Let $n$ be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors $d$ of $n$ (including $1$ and $n$). We say that an integer $m \geq 1$ is [i]superabundant[/i] (P.Erdos, $1944$) if $\forall k \in \{1, 2, \dots , m - 1 \}$, $\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}.$ Prove that there exists an infinity of [i]superabundant[/i] numbers.

2002 IMO Shortlist, 2

Let $n\geq2$ be a positive integer, with divisors $1=d_1<d_2<\,\ldots<d_k=n$. Prove that $d_1d_2+d_2d_3+\,\ldots\,+d_{k-1}d_k$ is always less than $n^2$, and determine when it is a divisor of $n^2$.

2016 Singapore Junior Math Olympiad, 4

A group of tourists get on $10$ buses in the outgoing trip. The same group of tourists get on $8$ buses in the return trip. Assuming each bus carries at least $1$ tourist, prove that there are at least $3$ tourists such that each of them has taken a bus in the return trip that has more people than the bus he has taken in the outgoing trip.

2025 Azerbaijan Junior NMO, 3

Alice and Bob take turns taking balloons from a box containing infinitely many balloons. In the first turn, Alice takes $k_1$ amount of balloons, where $\gcd(30;k_1)\neq1$. Then, on his first turn, Bob takes $k_2$ amount of ballons where $k_1<k_2<2k_1$. After first turn, Alice and Bob alternately takes as many balloons as his/her partner has. Is it possible for Bob to take $k_2$ amount of balloons at first, such that after a finite amount of turns, one of them have a number of balloons that is a multiple of $2025^{2025}$?

2006 AMC 8, 8

Tags:
The table shows some of the results of a survey by radiostation KAMC. What percentage of the males surveyed listen to the station? $ \begin{tabular}{|c|c|c|c|} \hline & Listen & Don't Listen & Total\\ \hline Males & ? & 26 & ?\\ \hline Females & 58 & ? & 96\\ \hline Total & 136 & 64 & 200\\ \hline \end{tabular}$ $ \textbf{(A)}\ 39 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 52 \qquad \textbf{(D)}\ 55 \qquad \textbf{(E)}\ 75$

2021 Moldova Team Selection Test, 2

Prove that if $p$ and $q$ are two prime numbers, such that $$p+p^2+p^3+...+p^q=q+q^2+q^3+...+q^p,$$ then $p=q$.

1988 USAMO, 5

A polynomial product of the form \[(1-z)^{b_1}(1-z^2)^{b_2}(1-z^3)^{b_3}(1-z^4)^{b_4}(1-z^5)^{b_5}\cdots(1-z^{32})^{b_{32}},\] where the $b_k$ are positive integers, has the surprising property that if we multiply it out and discard all terms involving $z$ to a power larger than $32$, what is left is just $1-2z$. Determine, with proof, $b_{32}$.

1998 Akdeniz University MO, 1

Prove that, for $k \in {\mathbb Z^+}$ $$k(k+1)(k+2)(k+3)$$ is not a perfect square.

2016 Brazil Team Selection Test, 3

Let $m$ and $n$ be positive integers such that $m>n$. Define $x_k=\frac{m+k}{n+k}$ for $k=1,2,\ldots,n+1$. Prove that if all the numbers $x_1,x_2,\ldots,x_{n+1}$ are integers, then $x_1x_2\ldots x_{n+1}-1$ is divisible by an odd prime.

Russian TST 2021, P3

Let $R^+$ be the set of positive real numbers. Determine all functions $f:R^+$ $\rightarrow$ $R^+$ such that for all positive real numbers $x$ and $y:$ \[f(x+f(xy))+y=f(x)f(y)+1\] [i]Ukraine[/i]

2015 Geolympiad Summer, 2.

Tags:
Let $ABC$ be a triangle. Let line $\ell$ be the line through the tangency points that are formed when the tangents from $A$ to the circle with diameter $BC$ are drawn. Let line $m$ be the line through the tangency points that are formed when the tangents from $B$ to the circle with diameter $AC$ are drawn. Show that the $\ell$, $m$, and the $C$-altitude concur.

2012 Indonesia TST, 4

Determine all integer $n > 1$ such that \[\gcd \left( n, \dfrac{n-m}{\gcd(n,m)} \right) = 1\] for all integer $1 \le m < n$.