This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1990 AIME Problems, 13

Tags:
Let $T = \{9^k : k \ \text{is an integer}, 0 \le k \le 4000\}$. Given that $9^{4000}$ has 3817 digits and that its first (leftmost) digit is 9, how many elements of $T$ have 9 as their leftmost digit?

1994 Tournament Of Towns, (426) 3

Two-mutually perpendicular lines $\ell$ and $m$ intersect each other at a point of the circumference of a circle, dividing it into three arcs. A point $M_i$ ($i = 1$,$2$,$3$) is taken on each arc so that the tangent line to the circumference at the point $M_i$ intersects $\ell$ and $m$ in two points at the same distance from $M_i$ (that is $M_i$ is the midpoint of the segment between them). Prove that the triangle $M_1M_2M_3$ is equilateral. (Przhevalsky)

2016 Croatia Team Selection Test, Problem 1

Let $n \ge 1$ and $x_1, \ldots, x_n \ge 0$. Prove that $$ (x_1 + \frac{x_2}{2} + \ldots + \frac{x_n}{n}) (x_1 + 2x_2 + \ldots + nx_n) \le \frac{(n+1)^2}{4n} (x_1 + x_2 + \ldots + x_n)^2 .$$

PEN H Problems, 80

Prove that if $a, b, c, d$ are integers such that $d=( a+\sqrt[3]{2}b+\sqrt[3]{4}c)^{2}$ then $d$ is a perfect square.

2004 AMC 12/AHSME, 19

Tags:
Circles $ A$, $ B$ and $ C$ are externally tangent to each other and internally tangent to circle $ D$. Circles $ B$ and $ C$ are congruent. Circle $ A$ has radius $ 1$ and passes through the center of $ D$. What is the radius of circle $ B$? [asy] unitsize(15mm); pair A=(-1,0),B=(2/3,8/9),C=(2/3,-8/9),D=(0,0); draw(Circle(D,2)); draw(Circle(A,1)); draw(Circle(B,8/9)); draw(Circle(C,8/9)); label("\(A\)", A); label("\(B\)", B); label("\(C\)", C); label("D", (-1.2,1.8));[/asy] $ \textbf{(A)}\ \frac23 \qquad \textbf{(B)}\ \frac {\sqrt3}{2} \qquad \textbf{(C)}\ \frac78 \qquad \textbf{(D)}\ \frac89 \qquad \textbf{(E)}\ \frac {1 \plus{} \sqrt3}{3}$

1976 IMO Longlists, 43

Prove that if for a polynomial $P(x, y)$, we have \[P(x - 1, y - 2x + 1) = P(x, y),\] then there exists a polynomial $\Phi(x)$ with $P(x, y) = \Phi(y - x^2).$

1989 Tournament Of Towns, (216) 4

Is it possible to mark a diagonal on each little square on the surface of a Rubik 's cube so that one obtains a non-intersecting path? (S . Fomin, Leningrad)

2002 HKIMO Preliminary Selection Contest, 18

Let $A_1A_2\cdots A_{2002}$ be a regular 2002 sided polygon. Each vertex $A_i$ is associated with a positive integer $a_i$ such that the following condition is satisfied: If $j_1,j_2,\cdots, j_k$ are positive integers such that $k<500$ and $A_{j_1}, A_{j_2}, \cdots A_{j_k}$ is a regular $k$ sided polygon, then the values of $a_{j_1},A_{j_2}, \cdots A_{j_k}$ are all different. Find the smallest possible value of $a_1+a_2+\cdots a_{2002}$

2013 Switzerland - Final Round, 5

Each of $2n + 1$ students chooses a finite, nonempty set of consecutive integers . Two students are friends if they have chosen a common number. Everyone student is friends with at least $n$ other students. Show that there is a student who is friends with everyone else.

1997 Estonia National Olympiad, 5

There are six small circles in the figure with a radius of $1$ and tangent to a large circle and the sides of the $ABC$ of an equilateral triangle, where touch points are $K, L$ and $M$ respectively with the midpoints of sides $AB, BC$ and $AC$. Find the radius of the large circle and the side of the triangle $ABC$. [img]https://cdn.artofproblemsolving.com/attachments/3/0/f858dcc5840759993ea2722fd9b9b15c18f491.png[/img]

2010 Bosnia Herzegovina Team Selection Test, 5

Tags: inequalities
Let $a$,$b$ and $c$ be sides of a triangle such that $a+b+c\le2$. Prove that $-3<{\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-\frac{a^3}{c}-\frac{b^3}{a}-\frac{c^3}{b}}<3$

2009 District Olympiad, 1

Let $m$ and $n$ be positive integers such that $5$ divides $2^n + 3^m$. Prove that $5$ divides $2^m + 3^n$.

1998 AIME Problems, 10

Eight spheres of radius 100 are placed on a flat surface so that each sphere is tangent to two others and their centers are the vertices of a regular octagon. A ninth sphere is placed on the flat surface so that it is tangent to each of the other eight spheres. The radius of this last sphere is $a+b\sqrt{c},$ where $a, b,$ and $c$ are positive integers, and $c$ is not divisible by the square of any prime. Find $a+b+c.$

2006 Greece Junior Math Olympiad, 3

Prove that between every $27$ different positive integers , less than $100$, there exist some two which are[color=red] NOT [/color]relative prime. [u]babis[/u]

2019 Durer Math Competition Finals, 12

How many ways are there to arrange the numbers $1, 2, 3, .. , 15$ in some order such that for any two numbers which are $2$ or $3$ positions apart, the one on the left is greater?

2003 Iran MO (3rd Round), 13

here is the most difficult and the most beautiful problem occurs in 21th iranian (2003) olympiad assume that P is n-gon ,lying on the plane ,we name its edge 1,2,..,n. if S=s1,s2,s3,.... be a finite or infinite sequence such that for each i, si is in {1,2,...,n}, we move P on the plane according to the S in this form: at first we reflect P through the s1 ( s1 means the edge which iys number is s1)then through s2 and so on like the figure below. a)show that there exist the infinite sequence S sucth that if we move P according to S we cover all the plane b)prove that the sequence in a) isn't periodic. c)assume that P is regular pentagon ,which the radius of its circumcircle is 1,and D is circle ,with radius 1.00001 ,arbitrarily in the plane .does exist a sequence S such that we move P according to S then P reside in D completely?

2011 HMNT, 1

Find the number of positive integers $x$ less than $100$ for which $$3^x + 5^x + 7^x + 11^x + 13^x + 17^x + 19^x$$ is prime.

1973 Miklós Schweitzer, 2

Let $ R$ be an Artinian ring with unity. Suppose that every idempotent element of $ R$ commutes with every element of $ R$ whose square is $ 0$. Suppose $ R$ is the sum of the ideals $ A$ and $ B$. Prove that $ AB\equal{}BA$. [i]A. Kertesz[/i]

1998 National High School Mathematics League, 13

Complex number $z=1-\sin\theta+\text{i}\cos\theta\left(\frac{\pi}{2}<\theta<\pi\right)$, find the range value of $\arg{\overline{z}}$.

1999 Yugoslav Team Selection Test, Problem 3

Tags: sequence , algebra
Consider the set $A_n=\{x_1,x_2,\ldots,x_n,y_1,y_2,\ldots,y_n\}$ of $2n$ variables. How many permutations of set $A_n$ are there for which it is possible to assign real values from the interval $(0,1)$ to the $2n$ variables so that: (i) $x_i+y_i=1$ for each $i$; (ii) $x_1<x_2<\ldots<x_n$; (iii) the $2n$ terms of the permutation form a strictly increasing sequence?

2014 Contests, 2

Do there exist positive integers $a$ and $b$ such that $a^n+n^b$ and $b^n+n^a$ are relatively prime for all natural $n$?

2018 China Team Selection Test, 4

Functions $f,g:\mathbb{Z}\to\mathbb{Z}$ satisfy $$f(g(x)+y)=g(f(y)+x)$$ for any integers $x,y$. If $f$ is bounded, prove that $g$ is periodic.

Brazil L2 Finals (OBM) - geometry, 2018.3

Let $ABC$ be an acute-angled triangle with circumcenter $O$ and orthocenter $H$. The circle with center $X_a$ passes in the points $A$ and $H$ and is tangent to the circumcircle of $ABC$. Define $X_b, X_c$ analogously, let $O_a, O_b, O_c$ the symmetric of $O$ to the sides $BC, AC$ and $AB$, respectively. Prove that the lines $O_aX_a, O_bX_b, O_cX_c$ are concurrents.

2023 All-Russian Olympiad Regional Round, 11.4

We write pairs of integers on a blackboard. Initially, the pair $(1,2)$ is written. On a move, if $(a, b)$ is on the blackboard, we can add $(-a, -b)$ or $(-b, a+b)$. In addition, if $(a, b)$ and $(c, d)$ are written on the blackboard, we can add $(a+c, b+d)$. Can we reach $(2022, 2023)$?

2005 Tournament of Towns, 1

On the graph of a polynomial with integral coefficients are two points with integral coordinates. Prove that if the distance between these two points is integral, then the segment connecting them is parallel to the $x$-axis. [i](4 points)[/i]