This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2000 Singapore MO Open, 2

Show that $240$ divides all numbers of the form $p^4 - q^4$, where p and q are prime numbers strictly greater than $5$. Show also that $240$ is the greatest common divisor of all numbers of the form $p^4 - q^4$, with $p$ and $q$ prime numbers strictly greater than $5$.

2010 Costa Rica - Final Round, 4

Find all integer solutions $(a,b)$ of the equation \[ (a+b+3)^2 + 2ab = 3ab(a+2)(b+2)\]

2016 CHMMC (Fall), 7

Tags: algebra
Let $f(x) = \frac{1}{1-\frac{3x}{16}}$. Consider the sequence $\{ 0, f(0), f(f(0)), f^3(0), \dots \}$ Find the smallest $L$ such that $f^n(0) \leq L$ for all $n$. If the sequence is unbounded, write none as your answer.

1992 AMC 8, 25

Tags:
One half of the water is poured out of a full container. Then one third of the remainder is poured out. Continue the process: one fourth of the remainder for the third pouring, one fifth of the remainder for the fourth pouring, etc. After how many pourings does exactly one tenth of the original water remain? $\text{(A)}\ 6 \qquad \text{(B)}\ 7 \qquad \text{(C)}\ 8 \qquad \text{(D)}\ 9 \qquad \text{(E)}\ 10$

2007 Kyiv Mathematical Festival, 5

a) One has a set of stones with weights $1, 2, \ldots, 20$ grams. Find all $k$ for which it is possible to place $k$ and the rest $20-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved. b) One has a set of stones with weights $1, 2, \ldots, 51$ grams. Find all $k$ for which it is possible to place $k$ and the rest $51-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved. c) One has a set of stones with weights $1, 2, \ldots, n$ grams ($n\in\mathbb{N}$). Find all $n$ and $k$ for which it is possible to place $k$ and the rest $n-k$ stones from the set respectively on the two pans of a balance so that equilibrium is achieved. [size=75] a) and b) were proposed at the festival, c) is a generalization[/size]

2015 JBMO Shortlist, A1

Let x; y; z be real numbers, satisfying the relations $x \ge 20$ $y \ge 40$ $z \ge 1675$ x + y + z = 2015 Find the greatest value of the product P = $xy z$

2021 Peru MO (ONEM), 4

Let $n\geq 3$ be a positive integer and a circle $\omega$ is given. A regular polygon(with $n$ sides) $P$ is drawn and your vertices are in the circle $\omega$ and these vertices are red. One operation is choose three red points $A,B,C$, such that $AB=BC$ and delete the point $B$. Prove that one can do some operations, such that only two red points remain in the circle.

1986 Traian Lălescu, 1.2

Show that for any real numbers $ a,b, $ there exists $ c\in [-2,1] $ such that $ \big| c^3+ac+b\big| \ge 1. $

2025 Kosovo National Mathematical Olympiad`, P2

Find the smallest natural number $k$ such that the system of equations $$x+y+z=x^2+y^2+z^2=\dots=x^k+y^k+z^k $$ has only one solution for positive real numbers $x$, $y$ and $z$.

JBMO Geometry Collection, 2020

Let $\triangle ABC$ be a right-angled triangle with $\angle BAC = 90^{\circ}$ and let $E$ be the foot of the perpendicular from $A$ to $BC$. Let $Z \ne A$ be a point on the line $AB$ with $AB = BZ$. Let $(c)$ be the circumcircle of the triangle $\triangle AEZ$. Let $D$ be the second point of intersection of $(c)$ with $ZC$ and let $F$ be the antidiametric point of $D$ with respect to $(c)$. Let $P$ be the point of intersection of the lines $FE$ and $CZ$. If the tangent to $(c)$ at $Z$ meets $PA$ at $T$, prove that the points $T$, $E$, $B$, $Z$ are concyclic. Proposed by [i]Theoklitos Parayiou, Cyprus[/i]

2010 Contests, 1

A [i]pucelana[/i] sequence is an increasing sequence of $16$ consecutive odd numbers whose sum is a perfect cube. How many pucelana sequences are there with $3$-digit numbers only?

2012 Saint Petersburg Mathematical Olympiad, 2

Natural $a,b,c$ are $>100$ and $(a,b,c)=1$. $c|a+b,a|b+c$ Find minimal $b$

1985 Traian Lălescu, 1.2

Calculate $ \sum_{i=2}^{\infty}\frac{i^2-2}{i!} . $

2015 Tournament of Towns, 6

An Emperor invited $2015$ wizards to a festival. Each of the wizards knows who of them is good and who is evil, however the Emperor doesn’t know this. A good wizard always tells the truth, while an evil wizard can tell the truth or lie at any moment. The Emperor gives each wizard a card with a single question, maybe different for different wizards, and after that listens to the answers of all wizards which are either “yes” or “no”. Having listened to all the answers, the Emperor expels a single wizard through a magic door which shows if this wizard is good or evil. Then the Emperor makes new cards with questions and repeats the procedure with the remaining wizards, and so on. The Emperor may stop at any moment, and after this the Emperor may expel or not expel a wizard. Prove that the Emperor can expel all the evil wizards having expelled at most one good wizard. [i]($10$ points)[/i]

2023 Switzerland - Final Round, 5

Let $D$ be the set of real numbers excluding $-1$. Find all functions $f: D \to D$ such that for all $x,y \in D$ satisfying $x \neq 0$ and $y \neq -x$, the equality $$(f(f(x))+y)f \left(\frac{y}{x} \right)+f(f(y))=x$$ holds.

2022 Harvard-MIT Mathematics Tournament, 6

Let f be a function from $\{1, 2, . . . , 22\}$ to the positive integers such that $mn | f(m) + f(n)$ for all $m, n \in \{1, 2, . . . , 22\}$. If $d$ is the number of positive divisors of $f(20)$, compute the minimum possible value of $d$.

2020 Jozsef Wildt International Math Competition, W46

Tags: inequalities
Let $x_1,x_2,\ldots,x_n\ge0$, $\alpha,\beta>0$, $\beta\ge\alpha$, $t\in\mathbb R$, such that $x_1^{x_2^t}\cdot x_2^{x_3^t}\cdots x_n^{x_1^t}=1$. Then prove that $$x_1^\beta x_2^t+x_2^\beta x_3^t+\ldots+x_n^\beta x_1^t\ge x_1^\alpha x_2^t+x_2^\alpha x_3^t+\ldots+x_n^\alpha x_1^t.$$ [i]Proposed by Marius Drăgan[/i]

2002 IMO, 2

The circle $S$ has centre $O$, and $BC$ is a diameter of $S$. Let $A$ be a point of $S$ such that $\angle AOB<120{{}^\circ}$. Let $D$ be the midpoint of the arc $AB$ which does not contain $C$. The line through $O$ parallel to $DA$ meets the line $AC$ at $I$. The perpendicular bisector of $OA$ meets $S$ at $E$ and at $F$. Prove that $I$ is the incentre of the triangle $CEF.$

1950 AMC 12/AHSME, 43

Tags:
The sum to infinity of $ \frac{1}{7}\plus{}\frac {2}{7^2}\plus{}\frac{1}{7^3}\plus{}\frac{2}{7^4}\plus{}...$ is: $\textbf{(A)}\ \frac{1}{5} \qquad \textbf{(B)}\ \dfrac{1}{24} \qquad \textbf{(C)}\ \dfrac{5}{48} \qquad \textbf{(D)}\ \dfrac{1}{16} \qquad \textbf{(E)}\ \text{None of these}$

2023 CCA Math Bonanza, L4.1

Tags: college
A pack of MIT students are holding an escape room, where students may compete in teams of 4, 5, or 6. There is \$60 dollars worth of prize money in Amazon gift cards for the winning team. If each gift card can contain any whole number of dollars, what is the minimum number of gift cards required so that the prize money can be distributed evenly among any team? [i]Lightning 4.1[/i]

2024 Taiwan TST Round 2, C

Let $k$ be a positive integer. The little one and the magician on the skywalk play a game. Initially, there are $N = 2^k$ distinct balls line up in a row, with each of the ball covered by a cup. On each turn, the little one chooses two cups, then the magician can either swap the balls in the two cups, or do a fake move so that the balls in the two cups stay the same. The little one cannot distinguish whether the magician fakes a move on not, nor can she observe the balls inside the cups. After $M = k \times 2^{k-1}$ turns, the magician opens all cups so the little one can check the ball in each of the cups. If the little one can identify whether the magician fakes a move or not for each of the $M$ turns, then the little one win. Prove that the little one has a winning strategy. [i] Proposed by usjl[/i]

1995 Argentina National Olympiad, 3

Let ABCD be a parallelogram, and P a point such that $2 PDA=ABP$ and $2 PAD=PCD$ Show that $AB=BP=CP$

2010 Postal Coaching, 4

Prove that the following statement is true for two natural nos. $m,n$ if and only $v(m) = v(n)$ where $v(k)$ is the highest power of $2$ dividing $k$. $\exists$ a set $A$ of positive integers such that $(i)$ $x,y \in \mathbb{N}, |x-y| = m \implies x \in A $ or $y \in A$ $(ii)$ $x,y \in \mathbb{N}, |x-y| = n \implies x \not\in A $ or $y \not\in A$

2019 Peru MO (ONEM), 3

In the trapezoid $ABCD$ , the base $AB$ is smaller than the $CD$ base. The point $K$ is chosen such that $AK$ is parallel to BC and $BK$ is parallel to $AD$. The points $P$ and $Q$ are chosen on the $AK$ and $BK$ rays respectively, such that $\angle ADP = \angle BCK$ and $\angle BCQ = \angle ADK$. (a) Show that the lines $AD, BC$ and $PQ$ go through the same point. (b) Assuming that the circumscribed circumferences of the $APD$ and $BCQ$ triangles intersect at two points, show that one of those points belongs to the line $PQ$.

1999 Baltic Way, 19

Prove that there exist infinitely many even positive integers $k$ such that for every prime $p$ the number $p^2+k$ is composite.