This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2022 Junior Balkan Team Selection Tests - Romania, P3

Find how many positive integers $k\in\{1,2,\ldots,2022\}$ have the following property: if $2022$ real numbers are written on a circle so that the sum of any $k$ consecutive numbers is equal to $2022$ then all of the $2022$ numbers are equal.

2003 Canada National Olympiad, 3

Tags: algebra
Find all real positive solutions (if any) to \begin{align*} x^3+y^3+z^3 &= x+y+z, \mbox{ and} \\ x^2+y^2+z^2 &= xyz. \end{align*}

2008 Junior Balkan MO, 4

A $ 4\times 4$ table is divided into $ 16$ white unit square cells. Two cells are called neighbors if they share a common side. A [i]move[/i] consists in choosing a cell and the colors of neighbors from white to black or from black to white. After exactly $ n$ moves all the $ 16$ cells were black. Find all possible values of $ n$.

2021 MOAA, 4

Let $a$, $b$, and $c$ be real numbers such that $0\le a,b,c\le 5$ and $2a + b + c = 10$. Over all possible values of $a$, $b$, and $c$, determine the maximum possible value of $a + 2b + 3c$. [i]Proposed by Andrew Wen[/i]

2014 JBMO TST - Turkey, 2

Find all triples of positive integers $(a, b, c)$ satisfying $(a^3+b)(b^3+a)=2^c$.

2020 LMT Fall, A17

Tags:
There are $n$ ordered tuples of positive integers $(a,b,c,d)$ that satisfy $$a^2+ b^2+ c^2+ d^2=13 \cdot 2^{13}.$$ Let these ordered tuples be $(a_1,b_1,c_1,d_1), (a_2,b_2,c_2,d_2), \dots, (a_n,b_n,c_n,d_n)$. Compute $\sum_{i=1}^{n}(a_i+b_i+c_i+d_i)$. [i]Proposed by Kaylee Ji[/i]

2024 Saint Petersburg Mathematical Olympiad, 1

Dima has red and blue felt—tip pens, with one of them he paints rational points on the numerical axis, and with the other - irrational ones. Dima colored $100$ rational and $100$ irrational points, after which he erased the signatures that allowed to find out where the origin was and what the scale was. Sergey has a compass with which he can measure the distance between any two colored points $A$ and $B$, and then mark on the axis a point located at a measured distance from any colored point $C$ (left or right); at the same time, Dima immediately paints it with the appropriate felt-tip pen. How Sergei can find out what color Dima paints rational points and what color he paints irrational ones?

2018 HMNT, 2

Tags: probability
Twenty-seven players are randomly split into three teams of nine. Given that Zack is on a different team from Mihir and Mihir is on a different team from Andrew, what is the probability that Zack and Andrew are on the same team?

2014 Saudi Arabia Pre-TST, 1.4

Majid wants to color the cells of an $n\times n$ chessboard into white and black so that each $2\times 2$ subsquare contains two white cells and two black cells. In how many ways can Majid color this $n\times n$ chessboard?

2020 Peru EGMO TST, 6

A table $110\times 110$ is given, we define the distance between two cells $A$ and $B$ as the least quantity of moves to move a chess king from the cell $A$ to cell $B$. We marked $n$ cells on the table $110\times 110$ such that the distance between any two cells is not equal to $15$. Determine the greatest value of $n$.

LMT Speed Rounds, 2016.5

Tags:
An isosceles triangle has angles of $50^\circ,x^\circ,$ and $y^\circ$. Find the maximum possible value of $x-y$. [i]Proposed by Nathan Ramesh

1994 AMC 12/AHSME, 15

Tags:
For how many $n$ in $\{1, 2, 3, ..., 100 \}$ is the tens digit of $n^2$ odd? $ \textbf{(A)}\ 10 \qquad\textbf{(B)}\ 20 \qquad\textbf{(C)}\ 30 \qquad\textbf{(D)}\ 40 \qquad\textbf{(E)}\ 50 $

2007 Junior Balkan Team Selection Tests - Romania, 2

Let $w_{1}$ and $w_{2}$ be two circles which intersect at points $A$ and $B$. Consider $w_{3}$ another circle which cuts $w_{1}$ in $D,E$, and it is tangent to $w_{2}$ in the point $C$, and also tangent to $AB$ in $F$. Consider $G \in DE \cap AB$, and $H$ the symetric point of $F$ w.r.t $G$. Find $\angle{HCF}$.

2019 LIMIT Category A, Problem 5

$64$ numbers (not necessarily distinct) are placed on the squares of a chessboard such that the sum of the numbers in every $2\times2$ square is $7$. What is the sum of the four numbers in the corners of the board?

2006 IberoAmerican, 1

In a scalene triangle $ABC$ with $\angle A = 90^\circ,$ the tangent line at $A$ to its circumcircle meets line $BC$ at $M$ and the incircle touches $AC$ at $S$ and $AB$ at $R.$ The lines $RS$ and $BC$ intersect at $N,$ while the lines $AM$ and $SR$ intersect at $U.$ Prove that the triangle $UMN$ is isosceles.

2000 239 Open Mathematical Olympiad, 6

Let ABCD be a convex quadrilateral, and let M and N be the midpoints of its sides AD and BC, respectively. Assume that the points A, B, M, N are concyclic, and the circumcircle of triangle BMC touches the line AB. Show that the circumcircle of triangle AND touches the line AB, too. Darij

2015 Postal Coaching, Problem 6

Show that there are infinitely many natural numbers which are simultaneously a sum of two squares and a sum of two cubes but which are not a sum of two $6-$th powers.

2020 CCA Math Bonanza, L3.2

Tags:
Archit and Ayush are walking around on the set of points $(x,y)$ for all integers $-1\leq x,y\leq1$. Archit starts at $(1,1)$ and Ayush starts at $(1,0)$. Each second, they move to another point in the set chosen uniformly at random among the points with distance $1$ away from them. If the probability that Archit goes to the point $(0,0)$ strictly before Ayush does can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m,n$, compute $m+n$. [i]2020 CCA Math Bonanza Lightning Round #3.2[/i]

2016 PUMaC Number Theory B, 7

Let $k = 2^6 \cdot 3^5 \cdot 5^2 \cdot 7^3 \cdot 53$. Let $S$ be the sum of $\frac{gcd(m,n)}{lcm(m,n)}$ over all ordered pairs of positive integers $(m, n)$ where $mn = k$. If $S$ can be written in simplest form as $\frac{r}{s}$, compute $r + s$.

2009 Sharygin Geometry Olympiad, 2

A cyclic quadrilateral is divided into four quadrilaterals by two lines passing through its inner point. Three of these quadrilaterals are cyclic with equal circumradii. Prove that the fourth part also is cyclic quadrilateral and its circumradius is the same. (A.Blinkov)

2010 Contests, 2

Two tangents $AT$ and $BT$ touch a circle at $A$ and $B$, respectively, and meet perpendicularly at $T$. $Q$ is on $AT$, $S$ is on $BT$, and $R$ is on the circle, so that $QRST$ is a rectangle with $QT = 8$ and $ST = 9$. Determine the radius of the circle.

2025 Kyiv City MO Round 1, Problem 4

Tags: algebra
Oleksii wrote some \( 2n \) (\( n > 1 \)) consecutive positive integers on the board. After that, he grouped these numbers into pairs in some way, and within each pair, he multiplied the two numbers together. He then wrote the resulting \( n \) products on the board instead of the original numbers. Afterward, Anton wrote down the difference between the largest and the smallest of the numbers Oleksii wrote. Oleksii wants Anton to write the smallest possible number. What is the smallest number that can be written? [i]Proposed by Oleksii Masalitin, Anton Trygub[/i]

2003 Switzerland Team Selection Test, 9

Given integers $0 < a_1 < a_2 <... < a_{101} < 5050$, prove that one can always choose for different numbers $a_k,a_l,a_m,a_n$ such that $5050 | a_k +a_l -a_m -a_n$

2019 Brazil Undergrad MO, 3

Let $a,b,c$ be constants and $a,b,c$ are positive real numbers. Prove that the equations $2x+y+z=\sqrt{c^2+z^2}+\sqrt{c^2+y^2}$ $x+2y+z=\sqrt{b^2+x^2}+\sqrt{b^2+z^2}$ $x+y+2z=\sqrt{a^2+x^2}+\sqrt{a^2+y^2}$ have exactly one real solution $(x,y,z)$ with $x,y,z \geq 0$.

2019 Danube Mathematical Competition, 3

Let be a sequence of $ 51 $ natural numbers whose sum is $ 100. $ Show that for any natural number $ 1\le k<100 $ there are some consecutive numbers from this sequence whose sum is $ k $ or $ 100-k. $