This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

1985 Tournament Of Towns, (098) 2

In the game "cat and mouse" the cat chases the mouse in either labyrinth $A, B$ or $C$ . [img]https://cdn.artofproblemsolving.com/attachments/4/5/429d106736946011f4607cf95956dcb0937c84.png[/img] The cat makes the first move starting at the point marked "$K$" , moving along a marked line to an adjacent point . The mouse then moves , under the same rules, starting from the point marked "$M$" . Then the cat moves again, and so on . If, at a point of time , the cat and mouse are at the same point the cat eats the mouse. Is there available to the cat a strategy which would enable it to catch the mouse , in cases $A, B$ and $C$? (A. Sosinskiy, Moscow)

2007 Princeton University Math Competition, 6

Triangle $ABC$ has $AC = 3$, $BC = 5$, $AB = 7$. A circle is drawn internally tangent to the circumcircle of $ABC$ at $C$, and tangent to $AB$. Let $D$ be its point of tangency with $AB$. Find $BD - DA$. [asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(6cm); real labelscalefactor = 2.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.5, xmax = 7.01, ymin = -3, ymax = 8.02; /* image dimensions */ /* draw figures */ draw(circle((1.37,2.54), 5.17)); draw((-2.62,-0.76)--(-3.53,4.2)); draw((-3.53,4.2)--(5.6,-0.44)); draw((5.6,-0.44)--(-2.62,-0.76)); draw(circle((-0.9,0.48), 2.12)); /* dots and labels */ dot((-2.62,-0.76),dotstyle); label("$C$", (-2.46,-0.51), SW * labelscalefactor); dot((-3.53,4.2),dotstyle); label("$A$", (-3.36,4.46), NW * labelscalefactor); dot((5.6,-0.44),dotstyle); label("$B$", (5.77,-0.17), SE * labelscalefactor); dot((0.08,2.37),dotstyle); label("$D$", (0.24,2.61), SW * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); label("$7$",(-3.36,4.46)--(5.77,-0.17), NE * labelscalefactor); label("$3$",(-3.36,4.46)--(-2.46,-0.51),SW * labelscalefactor); label("$5$",(-2.46,-0.51)--(5.77,-0.17), SE * labelscalefactor); /* end of picture */ [/asy]

1991 India Regional Mathematical Olympiad, 6

Find all integer values of $a$ such that the quadratic expression $(x+a)(x+1991) +1$ can be factored as a product $(x+b)(x+c)$ where $b,c$ are integers.

2023 Kazakhstan National Olympiad, 4

Given $x,y>0$ such that $x^2y^2+2x^3y=1$. Find the minimum value of sum $x+y$

2024 Romania National Olympiad, 2

Let $(\mathbb{K},+, \cdot)$ be a division ring in which $x^2y=yx^2,$ for all $x,y \in \mathbb{K}.$ Prove that $(\mathbb{K},+, \cdot)$ is commutative.

2017 Saudi Arabia Pre-TST + Training Tests, 7

Find all pairs of integers $(x, y)$ such that $y^3 = 8x^6 + 2x^3 y -y^2$.

2015 IMO Shortlist, A4

Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2021 Argentina National Olympiad, 5

Mica wrote a list of numbers using the following procedure. The first number is $1$, and then, at each step, he wrote the result of adding the previous number plus $3$. The first numbers on Mica's list are $$1, 4, 7, 10, 13, 16,\dots.$$ Next, Facu underlined all the numbers in Mica's list that are greater than $10$ and less than $100000,$ and that have all their digits the same. What are the numbers that Facu underlined?

2019 Durer Math Competition Finals, 1

Let $a_o,a_1,a_2,..,a_ n$ be a non-decreasing sequence of $n+1$ real numbers where $a_0 = 0$ and for every $j > i $ we have $a_j - a_i \le j - i$. Show that $$\left (\sum_{i=0}^n a_i \right )^2 \ge \sum_{i=0}^n a_i^3$$

2008 Mathcenter Contest, 4

Let $a,b$ and $c$ be positive integers that $$\frac{a\sqrt{3}+b}{b\sqrt3+c}$$ is a rational number, show that $$\frac{a^2+b^2+c^2}{a+b+ c}$$ is an integer. [i](Anonymous314)[/i]

2023 Harvard-MIT Mathematics Tournament, 1

Tags:
Suppose $P(x)$ is a cubic polynomial with integer coefficients such $P(\sqrt{5})=5$ and $P(\sqrt[3]{5})=5\sqrt[3]{5}$.

1993 Polish MO Finals, 1

Let be given a convex polyhedron whose all faces are triangular. The vertices of the polyhedron are colored using three colors. Prove that the number of faces with vertices in all the three colors is even.

2012 Cuba MO, 2

In a school with 5 different grades there are 250 girls and 250 boys. Each grade has the same number of students. for a competition of knowledge wants to form teams of a female and a male who are of the same grade. If in each grade there are at least $19$ females and $19$ males. Find the greatest amount of teams that can be formed.

PEN S Problems, 10

Let $p$ be an odd prime. Show that there is at most one non-degenerate integer triangle with perimeter $4p$ and integer area. Characterize those primes for which such triangle exist.

Russian TST 2015, P3

The triangle $ABC$ is given. Let $A'$ be the midpoint of the side $BC$, $B_c{}$ be the projection of $B{}$ onto the bisector of the angle $ACB{}$ and $C_b$ be the projection of the point $C{}$ onto the bisector of the angle $ABC$. Let $A_0$ be the center of the circle passing through $A', B_c, C_b$. The points $B_0$ and $C_0$ are defined similarly. Prove that the incenter of the triangle $ABC$ coincides with the orthocenter of the triangle $A_0B_0C_0$.

2024 Argentina Iberoamerican TST, 2

On a $5 \times 5$ board, pieces made up of $4$ squares are placed, as seen in the figure, each covering exactly $4$ squares of the board. The pieces can be rotated or turned over. They can also overlap, but they cannot protrude from the board. Suppose that each square on the board is covered by at most two pieces. Determine the maximum number of squares on the board that can be covered (by one or two pieces). [asy] size(3cm); draw((0,0)--(0,1)--(1,1)--(1,0)--(0,0)--(1,0)--(2,0)--(2,1)--(1,1)--(1,2)--(2,2)--(2,1)--(3,1)--(3,2)--(2,2)); [/asy]

2023 ELMO Shortlist, C5

Define the [i]mexth[/i] of \(k\) sets as the \(k\)th smallest positive integer that none of them contain, if it exists. Does there exist a family \(\mathcal F\) of sets of positive integers such that [list] [*]for any nonempty finite subset \(\mathcal G\) of \(\mathcal F\), the mexth of \(\mathcal G\) exists, and [*]for any positive integer \(n\), there is exactly one nonempty finite subset \(\mathcal G\) of \(\mathcal F\) such that \(n\) is the mexth of \(\mathcal G\). [/list] [i]Proposed by Espen Slettnes[/i]

1981 AMC 12/AHSME, 22

How many lines in a three dimensional rectangular coordiante system pass through four distinct points of the form $(i,j,k)$ where $i,j,$ and $k$ are positive integers not exceeding four? $\text{(A)} \ 60 \qquad \text{(B)} \ 64 \qquad \text{(C)} \ 72 \qquad \text{(D)} \ 76 \qquad \text{(E)} \ 100$

2009 Romanian Masters In Mathematics, 1

For $ a_i \in \mathbb{Z}^ \plus{}$, $ i \equal{} 1, \ldots, k$, and $ n \equal{} \sum^k_{i \equal{} 1} a_i$, let $ d \equal{} \gcd(a_1, \ldots, a_k)$ denote the greatest common divisor of $ a_1, \ldots, a_k$. Prove that $ \frac {d} {n} \cdot \frac {n!}{\prod\limits^k_{i \equal{} 1} (a_i!)}$ is an integer. [i]Dan Schwarz, Romania[/i]

2010 Contests, 3

Three speed skaters have a friendly "race" on a skating oval. They all start from the same point and skate in the same direction, but with different speeds that they maintain throughout the race. The slowest skater does $1$ lap per minute, the fastest one does $3.14$ laps per minute, and the middle one does $L$ laps a minute for some $1 < L < 3.14$. The race ends at the moment when all three skaters again come together to the same point on the oval (which may differ from the starting point.) Determine the number of different choices for $L$ such that exactly $117$ passings occur before the end of the race. Note: A passing is defined as when one skater passes another one. The beginning and the end of the race when all three skaters are together are not counted as passings.

2006 Harvard-MIT Mathematics Tournament, 6

A circle of radius $t$ is tangent to the hypotenuse, the incircle, and one leg of an isosceles right triangle with inradius $r=1+\sin \frac{\pi}{8}$. Find $rt$.

1980 IMO, 7

Tags: algebra
Prove that $4x^3-3x+1=2y^2$ has at least $31$ solutions in positive integers $x,y$ with $x\le 1980$. [i] Variant: [/i] Prove the equation $4x^3-3x+1=2y^2$ has infinitely many solutions in positive integers x,y.

2024 CMIMC Algebra and Number Theory, 4

For positive integer $n$, let $f(n)$ be the largest integer $k$ such that $k!\leq n$, let $g(n)=n-(f(n))!$, and for $j\geq 1$ let $$g^j(n)=\underbrace{g(\dots(g(n))\dots)}_{\text{$j$ times}}.$$ Find the smallest positive integer $n$ such that $g^{j}(n)> 0$ for all $j<30$ and $g^{30}(n)=0$. [i]Proposed by Connor Gordon[/i]

2019 Math Prize for Girls Problems, 16

Tags:
The figure shows a regular heptagon with sides of length 1. [asy] import geometry; unitsize(5); real R = 1/(2 sin(pi/7)); pair A = (0, R); pair B = rotate(360/7) * A; pair C = rotate(360/7) * B; pair D = rotate(360/7) * C; pair E = rotate(360/7) * D; pair F = rotate(360/7) * E; pair G = rotate(360/7) * F; pair X = B + G - A; pair Y = (D + E) / 2; draw(A -- B -- C -- D -- E -- F -- G -- cycle); draw("$1$", B -- X); draw("$1$", X -- G); draw("$d$", X -- Y); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(X); dot(Y); perpendicular(Y, NW, Y - A); [/asy] Determine the indicated length $d$. Express your answer in simplified radical form.

1977 AMC 12/AHSME, 4

Tags:
[asy] size(130); pair A = (2, 2.4), C = (0, 0), B = (4.3, 0), E = 0.7*A, F = 0.57*A + 0.43*B, D = (2.4, 0); draw(A--B--C--cycle); draw(E--D--F); label("$A$", A, N); label("$B$", B, E); label("$C$", C, W); label("$D$", D, S); label("$E$", E, NW); label("$F$", F, NE); //Credit to MSTang for the diagram[/asy] In triangle $ABC$, $AB=AC$ and $\measuredangle A=80^\circ$. If points $D$, $E$, and $F$ lie on sides $BC$, $AC$ and $AB$, respectively, and $CE=CD$ and $BF=BD$, then $\measuredangle EDF$ equals $\textbf{(A) }30^\circ\qquad\textbf{(B) }40^\circ\qquad\textbf{(C) }50^\circ\qquad\textbf{(D) }65^\circ\qquad \textbf{(E) }\text{none of these}$