This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2005 Denmark MO - Mohr Contest, 1

This figure is cut out from a sheet of paper. Folding the sides upwards along the dashed lines, one gets a (non-equilateral) pyramid with a square base. Calculate the area of the base. [img]https://1.bp.blogspot.com/-lPpfHqfMMRY/XzcBIiF-n2I/AAAAAAAAMW8/nPs_mLe5C8srcxNz45Wg-_SqHlRAsAmigCLcBGAsYHQ/s0/2005%2BMohr%2Bp1.png[/img]

2007 ITest, 50

A block $Z$ is formed by gluing one face of a solid cube with side length 6 onto one of the circular faces of a right circular cylinder with radius $10$ and height $3$ so that the centers of the square and circle coincide. If $V$ is the smallest convex region that contains Z, calculate $\lfloor\operatorname{vol}V\rfloor$ (the greatest integer less than or equal to the volume of $V$).

1938 Moscow Mathematical Olympiad, 040

What is the largest number of parts into which $n$ planes can divide space? We assume that the set of planes is non-degenerate in the sense that any three planes intersect in one point and no four planes have a common point (and for n=2 it is necessary to require that the planes are not parallel).

2019 HMNT, 10

For dessert, Melinda eats a spherical scoop of ice cream with diameter $2$ inches. She prefers to eat her ice cream in cube-like shapes, however. She has a special machine which, given a sphere placed in space, cuts it through the planes $x = n$, $y = n$, and $z = n$ for every integer $n$ (not necessarily positive). Melinda centers the scoop of ice cream uniformly at random inside the cube $0 \le x, y,z \le 1$, and then cuts it into pieces using her machine. What is the expected number of pieces she cuts the ice cream into?

1972 AMC 12/AHSME, 34

Three times Dick's age plus Tom's age equals twice Harry's age. Double the cube of Harry's age is equal to three times the cube of Dick's age added to the cube of Tom's age. Their respective ages are relatively prime to each other. The sum of the squares of their ages is $\textbf{(A) }42\qquad\textbf{(B) }46\qquad\textbf{(C) }122\qquad\textbf{(D) }290\qquad \textbf{(E) }326$

1997 All-Russian Olympiad Regional Round, 11.7

Are there convex $n$-gonal ($n \ge 4$) and triangular pyramids such that the four trihedral angles of the $n$-gonal pyramid are equal trihedral angles of a triangular pyramid? [hide=original wording] Существуют ли выпуклая n-угольная (n>= 4) и треугольная пирамиды такие, что четыре трехгранных угла n-угольной пирамиды равны трехгранным углам треугольной пирамиды?[/hide]

2018 Singapore MO Open, 1

Consider a regular cube with side length $2$. Let $A$ and $B$ be $2$ vertices that are furthest apart. Construct a sequence of points on the surface of the cube $A_1$, $A_2$, $\ldots$, $A_k$ so that $A_1=A$, $A_k=B$ and for any $i = 1,\ldots, k-1$, the distance from $A_i$ to $A_{i+1}$ is $3$. Find the minimum value of $k$.

2011 Math Prize For Girls Problems, 15

The game of backgammon has a "doubling" cube, which is like a standard 6-faced die except that its faces are inscribed with the numbers 2, 4, 8, 16, 32, and 64, respectively. After rolling the doubling cube four times at random, we let $a$ be the value of the first roll, $b$ be the value of the second roll, $c$ be the value of the third roll, and $d$ be the value of the fourth roll. What is the probability that $\frac{a + b}{c + d}$ is the average of $\frac{a}{c}$ and $\frac{b}{d}$ ?

2001 National High School Mathematics League, 9

The length of edge of cube $ABCD-A_1B_1C_1D_1$ is $1$, then the distance between lines $A_1C_1$ and $BD_1$ is________.

1962 Miklós Schweitzer, 9

Find the minimum possible sum of lengths of edges of a prism all of whose edges are tangent of a unit sphere. [Muller-Pfeiffer].

2013 IPhOO, 9

Bob, a spherical person, is floating around peacefully when Dave the giant orange fish launches him straight up 23 m/s with his tail. If Bob has density 100 $\text{kg/m}^3$, let $f(r)$ denote how far underwater his centre of mass plunges underwater once he lands, assuming his centre of mass was at water level when he's launched up. Find $\lim_{r\to0} \left(f(r)\right) $. Express your answer is meters and round to the nearest integer. Assume the density of water is 1000 $\text{kg/m}^3$. [i](B. Dejean, 6 points)[/i]

2014 Bundeswettbewerb Mathematik, 2

The $100$ vertices of a prism, whose base is a $50$-gon, are labeled with numbers $1, 2, 3, \ldots, 100$ in any order. Prove that there are two vertices, which are connected by an edge of the prism, with labels differing by not more than $48$. Note: In all the triangles the three vertices do not lie on a straight line.

2019 Stanford Mathematics Tournament, 5

The bases of a right hexagonal prism are regular hexagons of side length $s > 0$, and the prism has height $h$. The prism contains some water, and when it is placed on a flat surface with a hexagonal face on the bottom, the water has depth $\frac{s\sqrt3}{4}$. The water depth doesn’t change when the prism is turned so that a rectangular face is on the bottom. Compute $\frac{h}{s}$.

1989 Swedish Mathematical Competition, 4

Let $ABCD$ be a regular tetrahedron. Find the positions of point $P$ on the edge $BD$ such that the edge $CD$ is tangent to the sphere with diameter $AP$.

2013 All-Russian Olympiad, 2

The inscribed and exscribed sphere of a triangular pyramid $ABCD$ touch her face $BCD$ at different points $X$ and $Y$. Prove that the triangle $AXY$ is obtuse triangle.

2018-2019 SDML (High School), 13

A steel cube has edges of length $3$ cm, and a cone has a diameter of $8$ cm and a height of $24$ cm. The cube is placed in the cone so that one of its interior diagonals coincides with the axis of the cone. What is the distance, in cm, between the vertex of the cone and the closest vertex of the cube? [NEEDS DIAGRAM] $ \mathrm{(A) \ } \frac{12\sqrt6-3\sqrt3}{4} \qquad \mathrm{(B) \ } \frac{9\sqrt6-3\sqrt3}{2} \qquad \mathrm {(C) \ } 5\sqrt3 \qquad \mathrm{(D) \ } 6\sqrt6 - \sqrt3 \qquad \mathrm{(E) \ } 6\sqrt6$

1940 Putnam, B4

Prove that the locus of the point of intersection of three mutually perpendicular planes tangent to the surface $$ax^2 + by^2 +cz^2 =1\;\;\; (\text{where}\;\;abc \ne 0)$$ is the sphere $$x^2 +y^2 +z^2 =\frac{1}{a}+\frac{1}{b}+\frac{1}{c}.$$

1948 Moscow Mathematical Olympiad, 146

Consider two triangular pyramids $ABCD$ and $A'BCD$, with a common base $BCD$, and such that $A'$ is inside $ABCD$. Prove that the sum of planar angles at vertex $A'$ of pyramid $A'BCD$ is greater than the sum of planar angles at vertex $A$ of pyramid $ABCD$.

IV Soros Olympiad 1997 - 98 (Russia), 11.6

On the planet Brick, which has the shape of a rectangular parallelepiped with edges of $1$ km,$ 2$ km and $4$ km, the Little Prince built a house in the center of the largest face. What is the distance from the house to the most remote point on the planet? (The distance between two points on the surface of a planet is defined as the length of the shortest path along the surface connecting these points.)

2011 USAMTS Problems, 2

Let $x$ be a complex number such that $x^{2011}=1$ and $x\neq 1$. Compute the sum \[\dfrac{x^2}{x-1}+\dfrac{x^4}{x^2-1}+\dfrac{x^6}{x^3-1}+\cdots+\dfrac{x^{4020}}{x^{2010}-1}.\]

2006 Harvard-MIT Mathematics Tournament, 3

A moth starts at vertex $A$ of a certain cube and is trying to get to vertex $B$, which is opposite $A$, in five or fewer “steps,” where a step consists in traveling along an edge from one vertex to another. The moth will stop as soon as it reaches $B$. How many ways can the moth achieve its objective?

2011 Iran MO (3rd Round), 1

A regular dodecahedron is a convex polyhedra that its faces are regular pentagons. The regular dodecahedron has twenty vertices and there are three edges connected to each vertex. Suppose that we have marked ten vertices of the regular dodecahedron. [b]a)[/b] prove that we can rotate the dodecahedron in such a way that at most four marked vertices go to a place that there was a marked vertex before. [b]b)[/b] prove that the number four in previous part can't be replaced with three. [i]proposed by Kasra Alishahi[/i]

1964 Poland - Second Round, 5

Given is a trihedral angle with edges $ SA $, $ SB $, $ SC $, all plane angles of which are acute, and the dihedral angle at edge $ SA $ is right. Prove that the section of this triangle with any plane perpendicular to any edge, at a point different from the vertex $ S $, is a right triangle.

1976 IMO Longlists, 5

Let $ABCDS$ be a pyramid with four faces and with $ABCD$ as a base, and let a plane $\alpha$ through the vertex $A$ meet its edges $SB$ and $SD$ at points $M$ and $N$, respectively. Prove that if the intersection of the plane $\alpha$ with the pyramid $ABCDS$ is a parallelogram, then $SM \cdot SN > BM \cdot DN$.

1999 Gauss, 15

A box contains 36 pink, 18 blue, 9 green, 6 red, and 3 purple cubes that are identical in size. If a cube is selected at random, what is the probability that it is green? $\textbf{(A)}\ \dfrac{1}{9} \qquad \textbf{(B)}\ \dfrac{1}{8} \qquad \textbf{(C)}\ \dfrac{1}{5} \qquad \textbf{(D)}\ \dfrac{1}{4} \qquad \textbf{(E)}\ \dfrac{9}{70}$