Found problems: 2265
2014 AMC 8, 19
A cube with $3$-inch edges is to be constructed from $27$ smaller cubes with $1$-inch edges. Twenty-one of the cubes are colored red and $6$ are colored white. If the $3$-inch cube is constructed to have the smallest possible white surface area showing, what fraction of the surface area is white?
$\textbf{(A) }\frac{5}{54}\qquad\textbf{(B) }\frac{1}{9}\qquad\textbf{(C) }\frac{5}{27}\qquad\textbf{(D) }\frac{2}{9}\qquad \textbf{(E) }\frac{1}{3}$
1949 Moscow Mathematical Olympiad, 169
Construct a convex polyhedron of equal “bricks” shown in Figure.
[img]https://cdn.artofproblemsolving.com/attachments/6/6/75681a90478f978665b6874d0c0c9441ea3bd2.gif[/img]
1971 IMO, 2
Let $P_1$ be a convex polyhedron with vertices $A_1,A_2,\ldots,A_9$. Let $P_i$ be the polyhedron obtained from $P_1$ by a translation that moves $A_1$ to $A_i$. Prove that at least two of the polyhedra $P_1,P_2,\ldots,P_9$ have an interior point in common.
2006 Purple Comet Problems, 17
A concrete sewer pipe fitting is shaped like a cylinder with diameter $48$ with a cone on top. A cylindrical hole of diameter $30$ is bored all the way through the center of the fitting as shown. The cylindrical portion has height $60$ while the conical top portion has height $20$. Find $N$ such that the volume of the concrete is $N \pi$.
[asy]
import three;
size(250);
defaultpen(linewidth(0.7)+fontsize(10)); pen dashes = linewidth(0.7) + linetype("2 2");
currentprojection = orthographic(0,-15,5);
draw(circle((0,0,0), 15),dashes);
draw(circle((0,0,80), 15));
draw(scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw(shift((0,0,60))*scale3(24)*((-1,0,0)..(0,-1,0)..(1,0,0)));
draw((-24,0,0)--(-24,0,60)--(-15,0,80)); draw((24,0,0)--(24,0,60)--(15,0,80));
draw((-15,0,0)--(-15,0,80),dashes); draw((15,0,0)--(15,0,80),dashes);
draw("48", (-24,0,-20)--(24,0,-20));
draw((-15,0,-20)--(-15,0,-17)); draw((15,0,-20)--(15,0,-17));
label("30", (0,0,-15));
draw("60", (50,0,0)--(50,0,60));
draw("20", (50,0,60)--(50,0,80));
draw((50,0,60)--(47,0,60));[/asy]
2019 Adygea Teachers' Geometry Olympiad, 3
In a cube-shaped box with an edge equal to $5$, there are two balls. The radius of one of the balls is $2$. Find the radius of the other ball if one of the balls touches the base and two side faces of the cube, and the other ball touches the first ball, base and two other side faces of the cube.
1953 Poland - Second Round, 5
Calculate the volume $ V $ of tetrahedron $ ABCD $ given the length $ d $ of edge $ AB $ and the area $ S $ of the projection of the tetrahedron on the plane perpendicular to the line $ AB $.
2006 Estonia Math Open Junior Contests, 6
Find all real numbers with the following property: the difference of its cube and
its square is equal to the square of the difference of its square and the number itself.
2014 Online Math Open Problems, 29
Let $ABCD$ be a tetrahedron whose six side lengths are all integers, and let $N$ denote the sum of these side lengths. There exists a point $P$ inside $ABCD$ such that the feet from $P$ onto the faces of the tetrahedron are the orthocenter of $\triangle ABC$, centroid of $\triangle BCD$, circumcenter of $\triangle CDA$, and orthocenter of $\triangle DAB$. If $CD = 3$ and $N < 100{,}000$, determine the maximum possible value of $N$.
[i]Proposed by Sammy Luo and Evan Chen[/i]
1967 IMO, 2
Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$
1959 IMO, 6
Two planes, $P$ and $Q$, intersect along the line $p$. The point $A$ is given in the plane $P$, and the point $C$ in the plane $Q$; neither of these points lies on the straight line $p$. Construct an isosceles trapezoid $ABCD$ (with $AB \parallel CD$) in which a circle can be inscribed, and with vertices $B$ and $D$ lying in planes $P$ and $Q$ respectively.
PEN H Problems, 13
Find all pairs $(x,y)$ of positive integers that satisfy the equation \[y^{2}=x^{3}+16.\]
1978 IMO Longlists, 46
We consider a fixed point $P$ in the interior of a fixed sphere$.$ We construct three segments $PA, PB,PC$, perpendicular two by two$,$ with the vertexes $A, B, C$ on the sphere$.$ We consider the vertex $Q$ which is opposite to $P$ in the parallelepiped (with right angles) with $PA, PB, PC$ as edges$.$ Find the locus of the point $Q$ when $A, B, C$ take all the positions compatible with our problem.
2023 AMC 12/AHSME, 13
A rectangular box $\mathcal{P}$ has distinct edge lengths $a, b,$ and $c$. The sum of the lengths of all $12$ edges of $\mathcal{P}$ is $13$, the sum of the areas of all $6$ faces of $\mathcal{P}$ is $\frac{11}{2}$, and the volume of $\mathcal{P}$ is $\frac{1}{2}$. What is the length of the longest interior diagonal connecting two vertices of $\mathcal{P}$?
$\textbf{(A)}~2\qquad\textbf{(B)}~\frac{3}{8}\qquad\textbf{(C)}~\frac{9}{8}\qquad\textbf{(D)}~\frac{9}{4}\qquad\textbf{(E)}~\frac{3}{2}$
2007 AMC 10, 11
The numbers from $ 1$ to $ 8$ are placed at the vertices of a cube in such a manner that the sum of the four numbers on each face is the same. What is this common sum?
$ \textbf{(A)}\ 14 \qquad \textbf{(B)}\ 16 \qquad \textbf{(C)}\ 18 \qquad \textbf{(D)}\ 20 \qquad \textbf{(E)}\ 24$
2013 Princeton University Math Competition, 5
Suppose you have a sphere tangent to the $xy$-plane with its center having positive $z$-coordinate. If it is projected from a point $P=(0,b,a)$ to the $xy$-plane, it gives the conic section $y=x^2$. If we write $a=\tfrac pq$ where $p,q$ are integers, find $p+q$.
1986 IMO Longlists, 8
A tetrahedron $ABCD$ is given such that $AD = BC = a; AC = BD = b; AB\cdot CD = c^2$. Let $f(P) = AP + BP + CP + DP$, where $P$ is an arbitrary point in space. Compute the least value of $f(P).$
1989 Spain Mathematical Olympiad, 3
Prove $ \frac{1}{10\sqrt2}<\frac{1}{2}\frac{3}{4}\frac{5}{6}...\frac{99}{100}<\frac{1}{10} $
1991 Arnold's Trivium, 16
What fraction of a $5$-dimensional cube is the volume of the inscribed sphere? What fraction is it of a $10$-dimensional cube?
2018 AMC 8, 24
In the cube $ABCDEFGH$ with opposite vertices $C$ and $E,$ $J$ and $I$ are the midpoints of edges $\overline{FB}$ and $\overline{HD},$ respectively. Let $R$ be the ratio of the area of the cross-section $EJCI$ to the area of one of the faces of the cube. What is $R^2?$
[asy]
size(6cm);
pair A,B,C,D,EE,F,G,H,I,J;
C = (0,0);
B = (-1,1);
D = (2,0.5);
A = B+D;
G = (0,2);
F = B+G;
H = G+D;
EE = G+B+D;
I = (D+H)/2; J = (B+F)/2;
filldraw(C--I--EE--J--cycle,lightgray,black);
draw(C--D--H--EE--F--B--cycle);
draw(G--F--G--C--G--H);
draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed);
dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J);
label("$A$",A,E);
label("$B$",B,W);
label("$C$",C,S);
label("$D$",D,E);
label("$E$",EE,N);
label("$F$",F,W);
label("$G$",G,N);
label("$H$",H,E);
label("$I$",I,E);
label("$J$",J,W);
[/asy]
$\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}$
1974 IMO Longlists, 6
Prove that the product of two natural numbers with their sum cannot be the third power of a natural number.
2001 Croatia National Olympiad, Problem 2
A piece of paper in the shape of a square $FBHD$ with side $a$ is given. Points $G,A$ on $FB$ and $E,C$ on $BH$ are marked so that $FG=GA=AB$ and $BE=EC=CH$. The paper is folded along $DG,DA,DC$ and $AC$ so that $G$ overlaps with $B$, and $F$ and $H$ overlap with $E$. Compute the volume of the obtained tetrahedron $ABCD$.
2005 India IMO Training Camp, 2
Prove that one can find a $n_{0} \in \mathbb{N}$ such that $\forall m \geq n_{0}$, there exist three positive integers $a$, $b$ , $c$ such that
(i) $m^3 < a < b < c < (m+1)^3$;
(ii) $abc$ is the cube of an integer.
1983 IMO Longlists, 41
Let $E$ be the set of $1983^3$ points of the space $\mathbb R^3$ all three of whose coordinates are integers between $0$ and $1982$ (including $0$ and $1982$). A coloring of $E$ is a map from $E$ to the set {red, blue}. How many colorings of $E$ are there satisfying the following property: The number of red vertices among the $8$ vertices of any right-angled parallelepiped is a multiple of $4$ ?
2004 National Olympiad First Round, 24
What is the sum of cubes of real roots of the equation $x^3-2x^2-x+1=0$?
$
\textbf{(A)}\ -6
\qquad\textbf{(B)}\ 2
\qquad\textbf{(C)}\ 8
\qquad\textbf{(D)}\ 11
\qquad\textbf{(E)}\ \text{None of above}
$
1983 Spain Mathematical Olympiad, 7
A regular tetrahedron with an edge of $30$ cm rests on one of its faces. Assuming it is hollow, $2$ liters of water are poured into it. Find the height of the ''upper'' liquid and the area of the ''free'' surface of the water.