This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

1976 IMO Longlists, 2

Let $P$ be a set of $n$ points and $S$ a set of $l$ segments. It is known that: $(i)$ No four points of $P$ are coplanar. $(ii)$ Any segment from $S$ has its endpoints at $P$. $(iii)$ There is a point, say $g$, in $P$ that is the endpoint of a maximal number of segments from $S$ and that is not a vertex of a tetrahedron having all its edges in $S$. Prove that $l \leq \frac{n^2}{3}$

1990 Poland - Second Round, 2

In space, a point $O$ and a finite set of vectors $ \overrightarrow{v_1},\ldots,\overrightarrow{v_n} $ are given . We consider the set of points $ P $ for which the vector $ \overrightarrow{OP} $can be represented as a sum $ a_1 \overrightarrow{v_1} + \ldots + a_n\overrightarrow{v_n} $with coefficients satisfying the inequalities $ 0 \leq a_i \leq 1 $ $( i = 1, 2, \ldots, n $). Decide whether this set can be a tetrahedron.

1999 Harvard-MIT Mathematics Tournament, 9

What fraction of the Earth's volume lies above the $45$ degrees north parallel? You may assume the Earth is a perfect sphere. The volume in question is the smaller piece that we would get if the sphere were sliced into two pieces by a plane.

1964 Kurschak Competition, 1

$ABC$ is an equilateral triangle. $D$ and$ D'$ are points on opposite sides of the plane $ABC$ such that the two tetrahedra $ABCD$ and $ABCD'$ are congruent (but not necessarily with the vertices in that order). If the polyhedron with the five vertices $A, B, C, D, D'$ is such that the angle between any two adjacent faces is the same, find $DD'/AB$ .

1986 Polish MO Finals, 2

Find the maximum possible volume of a tetrahedron which has three faces with area $1$.

2004 Romania National Olympiad, 4

In the interior of a cube of side $6$ there are $1001$ unit cubes with the faces parallel to the faces of the given cube. Prove that there are $2$ unit cubes with the property that the center of one of them lies in the interior or on one of the faces of the other cube. [i]Dinu Serbanescu[/i]

1963 Polish MO Finals, 6

Through the vertex of a trihedral angle in which no edge is perpendicular to the opposite face, a straight line is drawn in the plane of each face perpendicular to the opposite edge. Prove that the three straight lines obtained lie in one plane.

2003 Tournament Of Towns, 5

A paper tetrahedron is cut along some of so that it can be developed onto the plane. Could it happen that this development cannot be placed on the plane in one layer?

2013 District Olympiad, 3

Let be the regular hexagonal prism $ABCDEFA'B C'D'E'F'$ with the base edge of $12$ and the height of $12 \sqrt{3}$. We denote by $N$ the middle of the edge $CC'$. a) Prove that the lines $BF'$ and $ND$ are perpendicular b) Calculate the distance between the lines $BF'$ and $ND$.

2014 AMC 12/AHSME, 17

A $4\times 4\times h$ rectangular box contains a sphere of radius $2$ and eight smaller spheres of radius $1$. The smaller spheres are each tangent to three sides of the box, and the larger sphere is tangent to each of the smaller spheres. What is $h$? [asy] import graph3; import solids; real h=2+2*sqrt(7); currentprojection=orthographic((0.75,-5,h/2+1),target=(2,2,h/2)); currentlight=light(4,-4,4); draw((0,0,0)--(4,0,0)--(4,4,0)--(0,4,0)--(0,0,0)^^(4,0,0)--(4,0,h)--(4,4,h)--(0,4,h)--(0,4,0)); draw(shift((1,3,1))*unitsphere,gray(0.85)); draw(shift((3,3,1))*unitsphere,gray(0.85)); draw(shift((3,1,1))*unitsphere,gray(0.85)); draw(shift((1,1,1))*unitsphere,gray(0.85)); draw(shift((2,2,h/2))*scale(2,2,2)*unitsphere,gray(0.85)); draw(shift((1,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,3,h-1))*unitsphere,gray(0.85)); draw(shift((3,1,h-1))*unitsphere,gray(0.85)); draw(shift((1,1,h-1))*unitsphere,gray(0.85)); draw((0,0,0)--(0,0,h)--(4,0,h)^^(0,0,h)--(0,4,h)); [/asy] $\textbf{(A) }2+2\sqrt 7\qquad \textbf{(B) }3+2\sqrt 5\qquad \textbf{(C) }4+2\sqrt 7\qquad \textbf{(D) }4\sqrt 5\qquad \textbf{(E) }4\sqrt 7\qquad$

1996 Romania National Olympiad, 2

Let $ABCD$ a tetrahedron and $M$ a variable point on the face $BCD$. The line perpendicular to $(BCD)$ in $M$ . intersects the planes$ (ABC)$, $(ACD)$, and $(ADB)$ in $M_1$, $M_2$, and $M_3$. Show that the sum $MM_1 + MM_2 + MM_3$ is constant if and only if the perpendicular dropped from $A$ to $(BCD)$ passes through the centroid of triangle $BCD$.

2000 District Olympiad (Hunedoara), 4

Consider the pyramid $ VABCD, $ where $ V $ is the top and $ ABCD $ is a rectangular base. If $ \angle BVD = \angle AVC, $ then prove that the triangles $ VAC $ and $ VBD $ share the same perimeter and area.

1988 National High School Mathematics League, 4

Given three planes $\alpha,\beta,\gamma$. Intersection angle between any two planes are all $\theta$.$\alpha\cap\beta=a,\beta\cap\gamma=b,\gamma\cap\alpha=c$. Given two conditions: A: $\theta>\frac{\pi}{3}$ B: $a,b,c$ share one point. $(\text{A})$A is sufficient but unnecessary condition of B. $(\text{B})$A is necessary but insufficient condition of B. $(\text{C})$A is sufficient and necessary condition of B. $(\text{D})$None above

2012-2013 SDML (High School), 4

For what digit $A$ is the numeral $1AA$ a perfect square in base-$5$ and a perfect cube in base-$6$? $\text{(A) }0\qquad\text{(B) }1\qquad\text{(C) }2\qquad\text{(D) }3\qquad\text{(E) }4$

2016 HMNT, 9

A cylinder with radius $15$ and height $16$ is inscribed in a sphere. Three congruent smaller spheres of radius $x$ are externally tangent to the base of the cylinder, externally tangent to each other, and internally tangent to the large sphere. What is the value of $x$?

2014 USAMTS Problems, 3:

Let $P$ be a square pyramid whose base consists of the four vertices $(0, 0, 0), (3, 0, 0), (3, 3, 0)$, and $(0, 3, 0)$, and whose apex is the point $(1, 1, 3)$. Let $Q$ be a square pyramid whose base is the same as the base of $P$, and whose apex is the point $(2, 2, 3)$. Find the volume of the intersection of the interiors of $P$ and $Q$.

1974 Bulgaria National Olympiad, Problem 6

In triangle pyramid $MABC$ at least two of the plane angles next to the edge $M$ are not equal to each other. Prove that if the bisectors of these angles form the same angle with the angle bisector of the third plane angle, the following inequality is true $$8a_1b_1c_1\le a^2a_1+b^2b_1+c^2c_1$$ where $a,b,c$ are sides of triangle $ABC$ and $a_1,b_1,c_1$ are edges crossed respectively with $a,b,c$. [i]V. Petkov[/i]

2004 AIME Problems, 3

A solid rectangular block is formed by gluing together $N$ congruent 1-cm cubes face to face. When the block is viewed so that three of its faces are visible, exactly 231 of the 1-cm cubes cannot be seen. Find the smallest possible value of $N$.

2002 Austrian-Polish Competition, 3

Let $ABCD$ be a tetrahedron and let $S$ be its center of gravity. A line through $S$ intersects the surface of $ABCD$ in the points $K$ and $L$. Prove that \[\frac{1}{3}\leq \frac{KS}{LS}\leq 3\]

2000 Harvard-MIT Mathematics Tournament, 5

Find all natural numbers $n$ such that $n$ equals the cube of the sum of its digits.

1995 AIME Problems, 11

A right rectangular prism $P$ (i.e., a rectangular parallelpiped) has sides of integral length $a, b, c,$ with $a\le b\le c.$ A plane parallel to one of the faces of $P$ cuts $P$ into two prisms, one of which is similar to $P,$ and both of which have nonzero volume. Given that $b=1995,$ for how many ordered triples $(a, b, c)$ does such a plane exist?

2013 Sharygin Geometry Olympiad, 3

Let $X$ be a point inside triangle $ABC$ such that $XA.BC=XB.AC=XC.AC$. Let $I_1, I_2, I_3$ be the incenters of $XBC, XCA, XAB$. Prove that $AI_1, BI_2, CI_3$ are concurrent. [hide]Of course, the most natural way to solve this is the Ceva sin theorem, but there is an another approach that may surprise you;), try not to use the Ceva theorem :))[/hide]

1963 Bulgaria National Olympiad, Problem 4

In the tetrahedron $ABCD$ three of the faces are right-angled triangles and the other is not an obtuse triangle. Prove that: (a) the fourth wall of the tetrahedron is a right-angled triangle if and only if exactly two of the plane angles having common vertex with the some of vertices of the tetrahedron are equal. (b) its volume is equal to $\frac16$ multiplied by the multiple of two shortest edges and an edge not lying on the same wall.

1997 Rioplatense Mathematical Olympiad, Level 3, 2

Consider a prism, not necessarily right, whose base is a rhombus $ABCD$ with side $AB = 5$ and diagonal $AC = 8$. A sphere of radius $r$ is tangent to the plane $ABCD$ at $C$ and tangent to the edges $AA_1$ , $BB _1$ and $DD_ 1$ of the prism. Calculate $r$ .

1997 Czech And Slovak Olympiad IIIA, 3

A tetrahedron $ABCD$ is divided into five polyhedra so that each face of the tetrahedron is a face of (exactly) one polyhedron, and that the intersection of any two of the polyhedra is either a common vertex, a common edge, or a common face. What is the smallest possible sum of the numbers of faces of the five polyhedra?