Found problems: 2265
2014 Harvard-MIT Mathematics Tournament, 9
Compute the side length of the largest cube contained in the region
\[ \{(x, y, z) : x^2+y^2+z^2 \le 25 \text{ and } x, y \ge 0 \} \]
of three-dimensional space.
2022 Chile Junior Math Olympiad, 5
In a right circular cone of wood, the radius of the circumference $T$ of the base circle measures $10$ cm, while every point on said circumference is $20$ cm away. from the apex of the cone. A red ant and a termite are located at antipodal points of $T$. A black ant is located at the midpoint of the segment that joins the vertex with the position of the termite. If the red ant moves to the black ant's position by the shortest possible path, how far does it travel?
2000 Harvard-MIT Mathematics Tournament, 3
Using $3$ colors, red, blue and yellow, how many different ways can you color a cube (modulo rigid rotations)?
2008 ITest, 14
The sum of the two perfect cubes that are closest to $500$ is $343+512=855$. Find the sum of the two perfect cubes that are closest to $2008$.
1987 Czech and Slovak Olympiad III A, 6
Let $AA',BB',CC'$ be parallel lines not lying in the same plane. Denote $U$ the intersection of the planes $A'BC,AB'C,ABC'$ and $V$ the intersection of the planes $AB'C',A'BC',A'B'C$. Show that the line $UV$ is parallel with $AA'$.
1996 National High School Mathematics League, 10
Give two congruent regular triangular pyramids, stick their bottom surfaces together. Then ,it becomes a hexahedron with all dihedral angles equal. The length of the shortest edge of the hexahedron is $2$. Then, the furthest distance between two vertexes is________.
1995 Belarus Team Selection Test, 2
There is a room having a form of right-angled parallelepiped. Four maps of the same scale are hung (generally, on different levels over the floor) on four walls of the room, so that sides of the maps are parallel to sides of the wall. It is known that the four points corresponding to each of Stockholm, Moscow, and Istanbul are coplanar. Prove that the four points coresponding to Hong Kong are coplanar as well.
2006 Tournament of Towns, 5
Can a regular octahedron be inscribed in a cube in such a way that all vertices of the octahedron are on cube's edges? (4)
1989 IMO Longlists, 21
Let $ ABC$ be an equilateral triangle with side length equal to $ N \in \mathbb{N}.$ Consider the set $ S$ of all points $ M$ inside the triangle $ ABC$ satisfying
\[ \overrightarrow{AM} \equal{} \frac{1}{N} \cdot \left(n \cdot \overrightarrow{AB} \plus{} m \cdot \overrightarrow{AC} \right)\]
with $ m, n$ integers, $ 0 \leq n \leq N,$ $ 0 \leq m \leq N$ and $ n \plus{} m \leq N.$
Every point of S is colored in one of the three colors blue, white, red such that
[b](i) [/b]no point of $ S \cap [AB]$ is coloured blue
[b](ii)[/b] no point of $ S \cap [AC]$ is coloured white
[b](iii)[/b] no point of $ S \cap [BC]$ is coloured red
Prove that there exists an equilateral triangle the following properties:
[b](1)[/b] the three vertices of the triangle are points of $ S$ and coloured blue, white and red, respectively.
[b](2)[/b] the length of the sides of the triangle is equal to 1.
[i]Variant:[/i] Same problem but with a regular tetrahedron and four different colors used.
1999 IberoAmerican, 1
Find all the positive integers less than 1000 such that the cube of the sum of its digits is equal to the square of such integer.
2013 Federal Competition For Advanced Students, Part 2, 6
Consider a regular octahedron $ABCDEF$ with lower vertex $E$, upper vertex $F$, middle cross-section $ABCD$, midpoint $M$ and circumscribed sphere $k$. Further, let $X$ be an arbitrary point inside the face $ABF$. Let the line $EX$ intersect $k$ in $E$ and $Z$, and the plane $ABCD$ in $Y$.
Show that $\sphericalangle{EMZ}=\sphericalangle{EYF}$.
1997 AMC 8, 21
Each corner cube is removed from this $3\text{ cm}\times 3\text{ cm}\times 3\text{ cm}$ cube. The surface area of the remaining figure is
[asy]draw((2.7,3.99)--(0,3)--(0,0));
draw((3.7,3.99)--(1,3)--(1,0));
draw((4.7,3.99)--(2,3)--(2,0));
draw((5.7,3.99)--(3,3)--(3,0));
draw((0,0)--(3,0)--(5.7,0.99));
draw((0,1)--(3,1)--(5.7,1.99));
draw((0,2)--(3,2)--(5.7,2.99));
draw((0,3)--(3,3)--(5.7,3.99));
draw((0,3)--(3,3)--(3,0));
draw((0.9,3.33)--(3.9,3.33)--(3.9,0.33));
draw((1.8,3.66)--(4.8,3.66)--(4.8,0.66));
draw((2.7,3.99)--(5.7,3.99)--(5.7,0.99));
[/asy]
$\textbf{(A)}\ 19\text{ sq.cm} \qquad \textbf{(B)}\ 24\text{ sq.cm} \qquad \textbf{(C)}\ 30\text{ sq.cm} \qquad \textbf{(D)}\ 54\text{ sq.cm} \qquad \textbf{(E)}\ 72\text{ sq.cm}$
2006 Romania National Olympiad, 3
Let $ABCDA_1B_1C_1D_1$ be a cube and $P$ a variable point on the side $[AB]$. The perpendicular plane on $AB$ which passes through $P$ intersects the line $AC'$ in $Q$. Let $M$ and $N$ be the midpoints of the segments $A'P$ and $BQ$ respectively.
a) Prove that the lines $MN$ and $BC'$ are perpendicular if and only if $P$ is the midpoint of $AB$.
b) Find the minimal value of the angle between the lines $MN$ and $BC'$.
2013 Romania Team Selection Test, 1
Given an integer $n\geq 2,$ let $a_{n},b_{n},c_{n}$ be integer numbers such that \[
\left( \sqrt[3]{2}-1\right) ^{n}=a_{n}+b_{n}\sqrt[3]{2}+c_{n}\sqrt[3]{4}.
\] Prove that $c_{n}\equiv 1\pmod{3} $ if and only if $n\equiv 2\pmod{3}.$
1999 Baltic Way, 9
A cube with edge length $3$ is divided into $27$ unit cubes. The numbers $1, 2,\ldots ,27$ are distributed arbitrarily over the unit cubes, with one number in each cube. We form the $27$ possible row sums (there are nine such sums of three integers for each of the three directions parallel with the edges of the cube). At most how many of the $27$ row sums can be odd?
1974 Spain Mathematical Olympiad, 1
It is known that a regular dodecahedron is a regular polyhedron with $12$ faces of equal pentagons and concurring $3$ edges in each vertex. It is requested to calculate, reasonably,
a) the number of vertices,
b) the number of edges,
c) the number of diagonals of all faces,
d) the number of line segments determined for every two vertices,
d) the number of diagonals of the dodecahedron.
2008 AMC 8, 16
A shape is created by joining seven unit cubes, as shown. What is the ratio of the volume in cubic units to the surface area in square units?
[asy]
import three;
defaultpen(linewidth(0.8));
real r=0.5;
currentprojection=orthographic(1,1/2,1/4);
draw(unitcube, white, thick(), nolight);
draw(shift(1,0,0)*unitcube, white, thick(), nolight);
draw(shift(1,-1,0)*unitcube, white, thick(), nolight);
draw(shift(1,0,-1)*unitcube, white, thick(), nolight);
draw(shift(2,0,0)*unitcube, white, thick(), nolight);
draw(shift(1,1,0)*unitcube, white, thick(), nolight);
draw(shift(1,0,1)*unitcube, white, thick(), nolight);[/asy]
$\textbf{(A)} \:1 : 6 \qquad\textbf{ (B)}\: 7 : 36 \qquad\textbf{(C)}\: 1 : 5 \qquad\textbf{(D)}\: 7 : 30\qquad\textbf{ (E)}\: 6 : 25$
1991 National High School Mathematics League, 13
In regular triangular pyramid $P-ABC$, $PO$ is its height, $M$ is the midpoint of $PO$. Draw the plane that passes $AM$ and parallel to $BC$. Now the triangular pyramid is divided into two parts. Find the ratio of their volume.
2024 AMC 12/AHSME, 23
A right pyramid has regular octagon $ABCDEFGH$ with side length $1$ as its base and apex $V.$ Segments $\overline{AV}$ and $\overline{DV}$ are perpendicular. What is the square of the height of the pyramid?
$
\textbf{(A) }1 \qquad
\textbf{(B) }\frac{1+\sqrt2}{2} \qquad
\textbf{(C) }\sqrt2 \qquad
\textbf{(D) }\frac32 \qquad
\textbf{(E) }\frac{2+\sqrt2}{3} \qquad
$
2015 JHMT, 10
A unit sphere is centered at $(0, 0, 1)$. There is a point light source located at $(1, 0, 4)$ that sends out light uniformly in every direction but is blocked by the sphere. What is the area of the sphere’s shadow on the $x-y$ plane? (A point $(a, b, c)$ denotes the point in three dimensions with $x$-coordinate $a$, $y$-coordinate $b$, and $z$-coordinate $c$)
2023 Stanford Mathematics Tournament, 2
Triangle $\vartriangle ABC$ has side lengths $AB = 39$, $BC = 16$, and $CA = 25$. What is the volume of the solid formed by rotating $\vartriangle ABC$ about line $BC$?
1966 IMO Longlists, 6
Let $m$ be a convex polygon in a plane, $l$ its perimeter and $S$ its area. Let $M\left( R\right) $ be the locus of all points in the space whose distance to $m$ is $\leq R,$ and $V\left(R\right) $ is the volume of the solid $M\left( R\right) .$
[i]a.)[/i] Prove that \[V (R) = \frac 43 \pi R^3 +\frac{\pi}{2} lR^2 +2SR.\]
Hereby, we say that the distance of a point $C$ to a figure $m$ is $\leq R$ if there exists a point $D$ of the figure $m$ such that the distance $CD$ is $\leq R.$ (This point $D$ may lie on the boundary of the figure $m$ and inside the figure.)
additional question:
[i]b.)[/i] Find the area of the planar $R$-neighborhood of a convex or non-convex polygon $m.$
[i]c.)[/i] Find the volume of the $R$-neighborhood of a convex polyhedron, e. g. of a cube or of a tetrahedron.
[b]Note by Darij:[/b] I guess that the ''$R$-neighborhood'' of a figure is defined as the locus of all points whose distance to the figure is $\leq R.$
1948 Moscow Mathematical Olympiad, 153
* What is the radius of the largest possible circle inscribed into a cube with side $a$?
1982 IMO Longlists, 20
Consider a cube $C$ and two planes $\sigma, \tau$, which divide Euclidean space into several regions. Prove that the interior of at least one of these regions meets at least three faces of the cube.
2001 Federal Math Competition of S&M, Problem 2
Vertices of a square $ABCD$ of side $\frac{25}4$ lie on a sphere. Parallel lines passing through points $A,B,C$ and $D$ intersect the sphere at points $A_1,B_1,C_1$ and $D_1$, respectively. Given that $AA_1=2$, $BB_1=10$, $CC_1=6$, determine the length of the segment $DD_1$.