This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2265

2021 Belarusian National Olympiad, 9.2

A bug is walking on the surface of a Rubik's cube(cube $3 \times 3 \times 3$). It can go to the adjacent cell on the same face or on the adjacent face. One day the bug started walking from some cell and returned to it, and visited all other cells exactly once. Prove that he made an even amount of moves that changed the face he is on.

Ukrainian TYM Qualifying - geometry, IV.11

In the tetrahedron $ABCD$, the point $E$ is the projection of the point $D$ on the plane $(ABC)$. Prove that the following statements are equivalent: a) $C = E$ or $CE \parallel AB$ b) For each point M belonging to the segment $CD$, the following equation is satisfied $$S^2_{\vartriangle ABM}= \frac{CM^2}{CD^2}\cdot S^2_{\vartriangle ABD}+\left(1- \frac{CM^2}{CD^2} \right)S^2_{\vartriangle ABC}$$ where $S_{\vartriangle XYZ}$ means the area of ​​triangle $XYZ$.

2002 District Olympiad, 3

Consider the regular pyramid $VABCD$ with the vertex in $V$ which measures the angle formed by two opposite lateral edges is $45^o$. The points $M,N,P$ are respectively, the projections of the point $A$ on the line $VC$, the symmetric of the point $M$ with respect to the plane $(VBD)$ and the symmetric of the point $N$ with respect to $O$. ($O$ is the center of the base of the pyramid.) a) Show that the polyhedron $MDNBP$ is a regular pyramid. b) Determine the measure of the angle between the line $ND$ and the plane $(ABC) $

1935 Moscow Mathematical Olympiad, 015

Triangles $\vartriangle ABC$ and $\vartriangle A_1B_1C_1$ lie on different planes. Line $AB$ intersects line $A_1B_1$, line $BC$ intersects line $B_1C_1$ and line $CA$ intersects line $C_1A_1$. Prove that either the three lines $AA_1, BB_1, CC_1$ meet at one point or that they are all parallel.

2010 Peru MO (ONEM), 4

A parallelepiped is said to be [i]integer [/i] when at least one of its edges measures a integer number of units. We have a group of integer parallelepipeds with which a larger parallelepiped is assembled, which has no holes inside or on its edge. Prove that the assembled parallelepiped is also integer. Example. The following figure shows an assembled parallelepiped with a certain group of integer parallelepipeds. [img]https://cdn.artofproblemsolving.com/attachments/3/7/f88954d6fe3a59fd2db6dcee9dddb120012826.png[/img]

2009 Princeton University Math Competition, 4

Tetrahedron $ABCD$ has sides of lengths, in increasing order, $7, 13, 18, 27, 36, 41$. If $AB=41$, then what is the length of $CD$?

2008 Purple Comet Problems, 8

A container is shaped like a square-based pyramid where the base has side length $23$ centimeters and the height is $120$ centimeters. The container is open at the base of the pyramid and stands in an open field with its vertex pointing down. One afternoon $5$ centimeters of rain falls in the open field partially filling the previously empty container. Find the depth in centimeters of the rainwater in the bottom of the container after the rain.

2008 AIME Problems, 5

A right circular cone has base radius $ r$ and height $ h$. The cone lies on its side on a flat table. As the cone rolls on the surface of the table without slipping, the point where the cone's base meets the table traces a circular arc centered at the point where the vertex touches the table. The cone first returns to its original position on the table after making $ 17$ complete rotations. The value of $ h/r$ can be written in the form $ m\sqrt {n}$, where $ m$ and $ n$ are positive integers and $ n$ is not divisible by the square of any prime. Find $ m \plus{} n$.

1996 All-Russian Olympiad, 1

Which are there more of among the natural numbers from 1 to 1000000, inclusive: numbers that can be represented as the sum of a perfect square and a (positive) perfect cube, or numbers that cannot be? [i]A. Golovanov[/i]

2025 China Team Selection Test, 4

Recall that a plane divides $\mathbb{R}^3$ into two regions, two parallel planes divide it into three regions, and two intersecting planes divide space into four regions. Consider the six planes which the faces of the cube $ABCD-A_1B_1C_1D_1$ lie on, and the four planes that the tetrahedron $ACB_1D_1$ lie on. How many regions do these ten planes split the space into?

2017 International Zhautykov Olympiad, 3

Let $ABCD$ be the regular tetrahedron, and $M, N$ points in space. Prove that: $AM \cdot AN + BM \cdot BN + CM \cdot CN \geq DM \cdot DN$

1992 AMC 12/AHSME, 19

For each vertex of a solid cube, consider the tetrahedron determined by the vertex and the midpoints of the three edges that meet at that vertex. The portion of the cube that remains when these eight tetrahedra are cut away is called a [i]cuboctahedron[/i]. The ratio of the volume of the cuboctahedron to the volume of the original cube is closest to which of these? $ \textbf{(A)}\ 75\%\qquad\textbf{(B)}\ 78\%\qquad\textbf{(C)}\ 81\%\qquad\textbf{(D)}\ 84\%\qquad\textbf{(E)}\ 87\% $

1997 Estonia National Olympiad, 3

A sphere is inscribed in a regular tetrahedron. Another regular tetrahedron is inscribed in the sphere. Find the ratio of the volumes of these two tetrahedra.

2002 Polish MO Finals, 2

There is given a triangle $ABC$ in a space. A sphere does not intersect the plane of $ABC$. There are $4$ points $K, L, M, P$ on the sphere such that $AK, BL, CM$ are tangent to the sphere and $\frac{AK}{AP} = \frac{BL}{BP} = \frac{CM}{CP}$. Show that the sphere touches the circumsphere of $ABCP$.

1997 Turkey MO (2nd round), 3

Let $D_{1}, D_{2}, . . . , D_{n}$ be rectangular parallelepipeds in space, with edges parallel to the $x, y, z$ axes. For each $D_{i}$, let $x_{i} , y_{i} , z_{i}$ be the lengths of its projections onto the $x, y, z$ axes, respectively. Suppose that for all pairs $D_{i}$ , $D_{j}$, if at least one of $x_{i} < x_{j}$ , $y_{i} < y_{j}$, $z_{i} < z_{j}$ holds, then $x_{i} \leq x_{j}$ , $y_{i} \leq y_{j}$, and $z_{i} < z_{j}$ . If the volume of the region $\bigcup^{n}_{i=1}{D_{i}}$ equals 1997, prove that there is a subset $\{D_{i_{1}}, D_{i_{2}}, . . . , D_{i_{m}}\}$ of the set $\{D_{1}, . . . , D_{n}\}$ such that $(i)$ if $k \not= l $ then $D_{i_{k}} \cap D_{i_{l}} = \emptyset $, and $(ii)$ the volume of $\bigcup^{m}_{k=1}{D_{i_{k}}}$ is at least 73.

1979 IMO Longlists, 41

Prove the following statement: There does not exist a pyramid with square base and congruent lateral faces for which the measures of all edges, total area, and volume are integers.

2018 Peru IMO TST, 8

You want to paint some edges of a regular dodecahedron red so that each face has an even number of painted edges (which can be zero). Determine from How many ways this coloration can be done. Note: A regular dodecahedron has twelve pentagonal faces and in each vertex concur three edges. The edges of the dodecahedron are all different for the purpose of the coloring . In this way, two colorings are the same only if the painted edges they are the same.

1987 China National Olympiad, 5

Let $A_1A_2A_3A_4$ be a tetrahedron. We construct four mutually tangent spheres $S_1,S_2,S_3,S_4$ with centers $A_1,A_2,A_3,A_4$ respectively. Suppose that there exists a point $Q$ such that we can construct two spheres centered at $Q$ satisfying the following conditions: i) One sphere with radius $r$ is tangent to $S_1,S_2,S_3,S_4$; ii) One sphere with radius $R$ is tangent to every edges of tetrahedron $A_1A_2A_3A_4$. Prove that $A_1A_2A_3A_4$ is a regular tetrahedron.

1976 Bundeswettbewerb Mathematik, 4

Each vertex of the 3-dimensional Euclidean space either is coloured red or blue. Prove that within those squares being possible in this space with edge length 1 there is at least one square either with three red vertices or four blue vertices !

1987 Dutch Mathematical Olympiad, 4

On each side of a regular tetrahedron with edges of length $1$ one constructs exactly such a tetrahedron. This creates a dodecahedron with $8$ vertices and $18$ edges. We imagine that the dodecahedron is hollow. Calculate the length of the largest line segment that fits entirely within this dodecahedron.

2003 AMC 12-AHSME, 13

An ice cream cone consists of a sphere of vanilla ice cream and a right circular cone that has the same diameter as the sphere. If the ice cream melts, it will exactly fill the cone. Assume that the melted ice cream occupies $ 75\%$ of the volume of the frozen ice cream. What is the ratio of the cone’s height to its radius? $ \textbf{(A)}\ 2: 1 \qquad \textbf{(B)}\ 3: 1 \qquad \textbf{(C)}\ 4: 1 \qquad \textbf{(D)}\ 16: 3 \qquad \textbf{(E)}\ 6: 1$

1991 Arnold's Trivium, 65

Find the mean value of the function $\ln r$ on the circle $(x - a)^2 + (y-b)^2 = R^2$ (of the function $1/r$ on the sphere).

1986 Tournament Of Towns, (115) 3

Vectors coincide with the edges of an arbitrary tetrahedron (possibly non-regular). Is it possible for the sum of these six vectors to equal the zero vector? (Problem from Leningrad)

1967 Miklós Schweitzer, 7

Let $ U$ be an $ n \times n$ orthogonal matrix. Prove that for any $ n \times n$ matrix $ A$, the matrices \[ A_m=\frac{1}{m+1} \sum_{j=0}^m U^{-j}AU^j\] converge entrywise as $ m \rightarrow \infty.$ [i]L. Kovacs[/i]

1987 IMO Shortlist, 9

Does there exist a set $M$ in usual Euclidean space such that for every plane $\lambda$ the intersection $M \cap \lambda$ is finite and nonempty ? [i]Proposed by Hungary.[/i] [hide="Remark"]I'm not sure I'm posting this in a right Forum.[/hide]