This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 339

VMEO IV 2015, 11.3

Find all positive integers $a,b,c$ satisfying $(a,b)=(b,c)=(c,a)=1$ and \[ \begin{cases} a^2+b\mid b^2+c\\ b^2+c\mid c^2+a \end{cases} \] and none of prime divisors of $a^2+b$ are congruent to $1$ modulo $7$

1994 AMC 12/AHSME, 27

A bag of popping corn contains $\frac{2}{3}$ white kernels and $\frac{1}{3}$ yellow kernels. Only $\frac{1}{2}$ of the white kernels will pop, whereas $\frac{2}{3}$ of the yellow ones will pop. A kernel is selected at random from the bag, and pops when placed in the popper. What is the probability that the kernel selected was white? $ \textbf{(A)}\ \frac{1}{2} \qquad\textbf{(B)}\ \frac{5}{9} \qquad\textbf{(C)}\ \frac{4}{7} \qquad\textbf{(D)}\ \frac{3}{5} \qquad\textbf{(E)}\ \frac{2}{3} $

2006 VJIMC, Problem 1

(a) Let $u$ and $v$ be two nilpotent elements in a commutative ring (with or without unity). Prove that $u+v$ is also nilpotent. (b) Show an example of a (non-commutative) ring $R$ and nilpotent elements $u,v\in R$ such that $u+v$ is not nilpotent.

2007 F = Ma, 27

A space station consists of two living modules attached to a central hub on opposite sides of the hub by long corridors of equal length. Each living module contains $N$ astronauts of equal mass. The mass of the space station is negligible compared to the mass of the astronauts, and the size of the central hub and living modules is negligible compared to the length of the corridors. At the beginning of the day, the space station is rotating so that the astronauts feel as if they are in a gravitational field of strength $g$. Two astronauts, one from each module, climb into the central hub, and the remaining astronauts now feel a gravitational field of strength $g'$ . What is the ratio $g'/g$ in terms of $N$?[asy] import roundedpath; size(300); path a = roundedpath((0,-0.3)--(4,-0.3)--(4,-1)--(5,-1)--(5,0),0.1); draw(scale(+1,-1)*a); draw(scale(+1,+1)*a); draw(scale(-1,-1)*a); draw(scale(-1,+1)*a); filldraw(circle((0,0),1),white,black); filldraw(box((-2,-0.27),(2,0.27)),white,white); draw(arc((0,0),1.5,+35,+150),dashed,Arrow); draw(arc((0,0),1.5,-150,-35),dashed,Arrow);[/asy] $ \textbf{(A)}\ 2N/(N-1) $ $ \textbf{(B)}\ N/(N-1) $ $ \textbf{(C)}\ \sqrt{(N-1)/N} $ $ \textbf{(D)}\ \sqrt{N/(N-1)} $ $ \textbf{(E)}\ \text{none of the above} $

2022 Moldova EGMO TST, 4

Prove that there exists an integer polynomial $P(X)$ such that $P(n)+4^n \equiv 0 \pmod {27}$. for all $n \geq 0$.

1969 Miklós Schweitzer, 1

Let $ G$ be an infinite group generated by nilpotent normal subgroups. Prove that every maximal Abelian normal subgroup of $ G$ is infinite. (We call an Abelian normal subgroup maximal if it is not contained in another Abelian normal subgroup.) [i]P. Erdos[/i]

2013 Miklós Schweitzer, 4

Let $A$ be an Abelian group with $n$ elements. Prove that there are two subgroups in $\text{GL}(n,\Bbb{C})$, isomorphic to $S_n$, whose intersection is isomorphic to the automorphism group of $A$. [i]Proposed by Zoltán Halasi[/i]

2005 Today's Calculation Of Integral, 44

Evaluate \[{\int_0^\frac{\pi}{2}} \frac{\sin 2005x}{\sin x}dx\]

2000 Romania National Olympiad, 3

We say that the abelian group $ G $ has property [i](P)[/i] if, for any commutative group $ H, $ any $ H’\le H $ and any momorphism $ \mu’:H\longrightarrow G, $ there exists a morphism $ \mu :H\longrightarrow G $ such that $ \mu\bigg|_{H’} =\mu’ . $ Show that: [b]a)[/b] the group $ \left( \mathbb{Q}^*,\cdot \right) $ hasn’t property [i](P).[/i] [b]b)[/b] the group $ \left( \mathbb{Q}, +\right) $ has property [i](P).[/i]

2009 Romania National Olympiad, 3

Find the natural numbers $ n\ge 2 $ which have the property that the ring of integers modulo $ n $ has exactly an element that is not a sum of two squares.

2007 Pre-Preparation Course Examination, 2

Let $\{A_{1},\dots,A_{k}\}$ be matrices which make a group under matrix multiplication. Suppose $M=A_{1}+\dots+A_{k}$. Prove that each eigenvalue of $M$ is equal to $0$ or $k$.

1978 Germany Team Selection Test, 4

Let $B$ be a set of $k$ sequences each having $n$ terms equal to $1$ or $-1$. The product of two such sequences $(a_1, a_2, \ldots , a_n)$ and $(b_1, b_2, \ldots , b_n)$ is defined as $(a_1b_1, a_2b_2, \ldots , a_nb_n)$. Prove that there exists a sequence $(c_1, c_2, \ldots , c_n)$ such that the intersection of $B$ and the set containing all sequences from $B$ multiplied by $(c_1, c_2, \ldots , c_n)$ contains at most $\frac{k^2}{2^n}$ sequences.

2011 China Girls Math Olympiad, 7

There are $n$ boxes ${B_1},{B_2},\ldots,{B_n}$ from left to right, and there are $n$ balls in these boxes. If there is at least $1$ ball in ${B_1}$, we can move one to ${B_2}$. If there is at least $1$ ball in ${B_n}$, we can move one to ${B_{n - 1}}$. If there are at least $2$ balls in ${B_k}$, $2 \leq k \leq n - 1$ we can move one to ${B_{k - 1}}$, and one to ${B_{k + 1}}$. Prove that, for any arrangement of the $n$ balls, we can achieve that each box has one ball in it.

2011 Indonesia TST, 2

At a certain mathematical conference, every pair of mathematicians are either friends or strangers. At mealtime, every participant eats in one of two large dining rooms. Each mathematician insists upon eating in a room which contains an even number of his or her friends. Prove that the number of ways that the mathematicians may be split between the two rooms is a power of two (i.e., is of the form $ 2^k$ for some positive integer $ k$).

2006 Iran MO (3rd Round), 3

$L$ is a fullrank lattice in $\mathbb R^{2}$ and $K$ is a sub-lattice of $L$, that $\frac{A(K)}{A(L)}=m$. If $m$ is the least number that for each $x\in L$, $mx$ is in $K$. Prove that there exists a basis $\{x_{1},x_{2}\}$ for $L$ that $\{x_{1},mx_{2}\}$ is a basis for $K$.

2012 Putnam, 2

Let $*$ be a commutative and associative binary operation on a set $S.$ Assume that for every $x$ and $y$ in $S,$ there exists $z$ in $S$ such that $x*z=y.$ (This $z$ may depend on $x$ and $y.$) Show that if $a,b,c$ are in $S$ and $a*c=b*c,$ then $a=b.$

1989 IMO Longlists, 82

Let $ A$ be a set of positive integers such that no positive integer greater than 1 divides all the elements of $ A.$ Prove that any sufficiently large positive integer can be written as a sum of elements of $ A.$ (Elements may occur several times in the sum.)

1986 Miklós Schweitzer, 5

Prove that existence of a constant $c$ with the following property: for every composite integer $n$, there exists a group whose order is divisible by $n$ and is less than $n^c$, and that contains no element of order $n$. [P. P. Palfy]

2011 Romania National Olympiad, 1

Prove that a ring that has a prime characteristic admits nonzero nilpotent elements if and only if its characteristic divides the number of its units.

1993 Hungary-Israel Binational, 2

In the questions below: $G$ is a finite group; $H \leq G$ a subgroup of $G; |G : H |$ the index of $H$ in $G; |X |$ the number of elements of $X \subseteq G; Z (G)$ the center of $G; G'$ the commutator subgroup of $G; N_{G}(H )$ the normalizer of $H$ in $G; C_{G}(H )$ the centralizer of $H$ in $G$; and $S_{n}$ the $n$-th symmetric group. Suppose that $n \geq 1$ is such that the mapping $x \mapsto x^{n}$ from $G$ to itself is an isomorphism. Prove that for each $a \in G, a^{n-1}\in Z (G).$

1951 Miklós Schweitzer, 14

For which commutative finite groups is the product of all elements equal to the unit element?

2024 IMC, 4

Let $g$ and $h$ be two distinct elements of a group $G$, and let $n$ be a positive integer. Consider a sequence $w=(w_1,w_2,\dots)$ which is not eventually periodic and where each $w_i$ is either $g$ or $h$. Denote by $H$ the subgroup of $G$ generated by all elements of the form $w_kw_{k+1}\dotsc w_{k+n-1}$ with $k \ge 1$. Prove that $H$ does not depend on the choice of the sequence $w$ (but may depend on $n$).

1962 Miklós Schweitzer, 3

Let $ A$ and $ B$ be two Abelian groups, and define the sum of two homomorphisms $ \eta$ and $ \chi$ from $ A$ to $ B$ by \[ a( \eta\plus{}\chi)\equal{}a\eta\plus{}a\chi \;\textrm{for all}\ \;a \in A\ .\] With this addition, the set of homomorphisms from $ A$ to $ B$ forms an Abelian group $ H$. Suppose now that $ A$ is a $ p$-group ( $ p$ a prime number). Prove that in this case $ H$ becomes a topological group under the topology defined by taking the subgroups $ p^kH \;(k\equal{}1,2,...)$ as a neighborhood base of $ 0$. Prove that $ H$ is complete in this topology and that every connected component of $ H$ consists of a single element. When is $ H$ compact in this topology? [L. Fuchs]

2001 VJIMC, Problem 4

Let $R$ be an associative non-commutative ring and let $n>2$ be a fixed natural number. Assume that $x^n=x$ for all $x\in R$. Prove that $xy^{n-1}=y^{n-1}x$ holds for all $x,y\in R$.

2011 Croatia Team Selection Test, 2

There were finitely many persons at a party among whom some were friends. Among any $4$ of them there were either $3$ who were all friends among each other or $3$ who weren't friend with each other. Prove that you can separate all the people at the party in two groups in such a way that in the first group everyone is friends with each other and that all the people in the second group are not friends to anyone else in second group. (Friendship is a mutual relation).