Found problems: 15925
EMCC Accuracy Rounds, 2021
[b]p1.[/b] Evaluate $1^2 - 2^2 + 3^2 - 4^2 + ...+ 19^2 - 20^2 + 21^2$.
[b]p2.[/b] Kevin is playing in a table-tennis championship against Vincent. Kevin wins the championship if he wins two matches against Vincent, while Vincent must win three matches to win the championship. Given that both players have a $50\%$ chance of winning each match and there are no ties, the probability that Vincent loses the championship can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$.
[b]p3.[/b] For how many positive integers $n$ less than $2000$ is $n^{3n}$ a perfect fourth power?
[b]p4.[/b] Given that a coin of radius $\sqrt{3}$ cm is tossed randomly onto a plane tiled by regular hexagons of side length $14$ cm, the chance that it lands strictly inside of a hexagon can be written in the form $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$.
[b]p5.[/b] Given that $A,C,E,I, P,$ and $M$ are distinct nonzero digits such that $$EPIC + EMCC + AMC = PEACE,$$ what is the least possible value of $PEACE$?
[b]p6.[/b] A palindrome is a number that reads the same forwards and backwards. Call a number palindrome-ish if it is not a palindrome but we can make it a palindrome by changing one digit (we cannot change the first digit to zero). For instance, $4009$ is palindrome-ish because we can change the $4$ to a $9$. How many palindrome-ish four-digit numbers are there?
[b]p7.[/b] Given that the heights of triangle $ABC$ have lengths $\frac{15}{7}$ , $5$, and $3$, what is the square of the area of $ABC$?
[b]p8.[/b] Suppose that cubic polynomial $P(x)$ has leading coecient $1$ and three distinct real roots in the interval $[-20, 2]$. Given that the equation $P\left(x + \frac{1}{x} \right) = 0$ has exactly two distinct real solutions, the range of values that $P(3)$ can take is the open interval $(a, b)$. Compute $b - a$.
[b]p9.[/b] Vincent the Bug has $17$ students in his class lined up in a row. Every day, starting on January $1$, $2021$, he performs the same series of swaps between adjacent students. One example of a series of swaps is: swap the $4$th and the $5$th students, then swap the $2$nd and the $3$rd, then the $3$rd and the $4$th. He repeats this series of swaps every day until the students are in the same arrangement as on January $1$. What is the greatest number of days this process could take?
[b]p10.[/b] The summation $$\sum^{18}_{i=1}\frac{1}{i}$$ can be written in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Compute the number of divisors of $b$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 IMO Shortlist, 2
Consider a polynomial $P(x) = \prod^9_{j=1}(x+d_j),$ where $d_1, d_2, \ldots d_9$ are nine distinct integers. Prove that there exists an integer $N,$ such that for all integers $x \geq N$ the number $P(x)$ is divisible by a prime number greater than 20.
[i]Proposed by Luxembourg[/i]
2001 All-Russian Olympiad, 2
The two polynomials $(x) =x^4+ax^3+bx^2+cx+d$ and $Q(x) = x^2+px+q$ take negative values on an interval $I$ of length greater than $2$, and nonnegative values outside of $I$. Prove that there exists $x_0 \in \mathbb R$ such that $P(x_0) < Q(x_0)$.
2021 Thailand Mathematical Olympiad, 2
Determine all sequences $a_1,a_2,a_3,\dots$ of positive integers that satisfy the equation
$$(n^2+1)a_{n+1} - a_n = n^3+n^2+1$$
for all positive integers $n$.
2010 Contests, 3
Given complex numbers $a,b,c$, we have that $|az^2 + bz +c| \leq 1$ holds true for any complex number $z, |z| \leq 1$. Find the maximum value of $|bc|$.
2017 ELMO Shortlist, 2
Find all functions $f:\mathbb{R}\to \mathbb{R}$ such that for all real numbers $a,b,$ and $c$:
(i) If $a+b+c\ge 0$ then $f(a^3)+f(b^3)+f(c^3)\ge 3f(abc).$
(ii) If $a+b+c\le 0$ then $f(a^3)+f(b^3)+f(c^3)\le 3f(abc).$
[i]Proposed by Ashwin Sah[/i]
2000 JBMO ShortLists, 11
Prove that for any integer $n$ one can find integers $a$ and $b$ such that
\[n=\left[ a\sqrt{2}\right]+\left[ b\sqrt{3}\right] \]
Russian TST 2018, P2
An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have
$$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$
Find the largest constant $K = K(n)$ such that
$$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$
holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.
1979 Chisinau City MO, 176
Indicate all the roots of the equation $x^2+1 = \cos x$.
2010 Princeton University Math Competition, 4
Define $\displaystyle{f(x) = x + \sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x + \ldots}}}}}$. Find the smallest integer $x$ such that $f(x)\ge50\sqrt{x}$.
(Edit: The official question asked for the "smallest integer"; the intended question was the "smallest positive integer".)
2023 Bangladesh Mathematical Olympiad, P2
Let {$a_1, a_2,\cdots,a_n$} be a set of $n$ real numbers whos sym equals S. It is known that each number in the set is less than $\frac{S}{n-1}$. Prove that for any three numbers $a_i$, $a_j$ and $a_k$ in the set, $a_i+a_j>a_k$.
2022 JHMT HS, 2
The polynomial $P(x)=3x^3-2x^2+ax-b$ has roots $\sin^2\theta$, $\cos^2\theta$, and $\sin\theta\cos\theta$ for some angle $\theta$. Find $P(1)$.
2010 Iran Team Selection Test, 2
Find all non-decreasing functions $f:\mathbb R^+\cup\{0\}\rightarrow\mathbb R^+\cup\{0\}$ such that for each $x,y\in \mathbb R^+\cup\{0\}$
\[f\left(\frac{x+f(x)}2+y\right)=2x-f(x)+f(f(y)).\]
1975 Chisinau City MO, 93
Prove that $(a^2 + b^2 + c^2)^ 2 = 2 (a^4 + b^4 + c^4)$ if $a + b + c = 0$.
2020 Brazil National Olympiad, 1
Prove that there are positive integers $a_1, a_2,\dots, a_{2020}$ such that
$$\dfrac{1}{a_1}+\dfrac{1}{2a_2}+\dfrac{1}{3a_3}+\dots+\dfrac{1}{2020a_{2020}}=1.$$
2018 All-Russian Olympiad, 2
Let $n\geq 2$ and $x_{1},x_{2},\ldots,x_{n}$ positive real numbers. Prove that
\[\frac{1+x_{1}^2}{1+x_{1}x_{2}}+\frac{1+x_{2}^2}{1+x_{2}x_{3}}+\cdots+\frac{1+x_{n}^2}{1+x_{n}x_{1}}\geq n.\]
2016 Argentina National Olympiad, 5
Let $a$ and $b$ be rational numbers such that $a+b=a^2+b^2$ . Suppose the common value $s=a+b=a^2+b^2$ is not an integer, and let's write it as an irreducible fraction: $s=\frac{m}{n}$. Let $p$ be the smallest prime divisor of $n$. Find the minimum value of $p$.
2013 Indonesia MO, 5
Let $P$ be a quadratic (polynomial of degree two) with a positive leading coefficient and negative discriminant. Prove that there exists three quadratics $P_1, P_2, P_3$ such that:
- $P(x) = P_1(x) + P_2(x) + P_3(x)$
- $P_1, P_2, P_3$ have positive leading coefficients and zero discriminants (and hence each has a double root)
- The roots of $P_1, P_2, P_3$ are different
1994 Italy TST, 4
Let $X$ be a set of $n$ elements and $k$ be a positive integer.
Consider the family $S_k$ of all $k$-tuples $(E_1,...,E_k)$ with $E_i \subseteq X$ for each $i$.
Evaluate the sums $\sum_{(E_1,...,E_k) \in S_k }|E_1 \cap ... \cap E_k|$ and $\sum_{(E_1,...,E_k) \in S_k }|E_1 \cup ... \cup E_k|$
2012 Kazakhstan National Olympiad, 1
Function $ f:\mathbb{R}\rightarrow\mathbb{R} $ such that $f(xf(y))=yf(x)$ for any $x,y$ are real numbers. Prove that $f(-x) = -f(x)$ for all real numbers $x$.
2025 Belarusian National Olympiad, 10.2
Let $n$ be a positive integer and $P(x)$ be a polynomial with integer coefficients such that $P(1)=1,P(2)=2,\ldots,P(n)=n$.
Prove that $P(0)$ is divisible by $2 \cdot 3 \cdot \ldots \cdot n$.
[i]A. Voidelevich[/i]
2021 CHMMC Winter (2021-22), 5
How many cubics in the form $x^3 -ax^2 + (a+d)x -(a+2d)$ for integers $a,d$ have roots that are all non-negative integers?
2015 IMO, 5
Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$.
[i]Proposed by Dorlir Ahmeti, Albania[/i]
2019 Saudi Arabia Pre-TST + Training Tests, 3.1
Let $P(x)$ be a monic polynomial of degree $100$ with $100$ distinct noninteger real roots. Suppose that each of polynomials $P(2x^2 - 4x)$ and $P(4x - 2x^2)$ has exactly $130$ distinct real roots. Prove that there exist non constant polynomials $A(x),B(x)$ such that $A(x)B(x) = P(x)$ and $A(x) = B(x)$ has no root in $(-1.1)$
ABMC Speed Rounds, 2021
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] You and nine friends spend $4000$ dollars on tickets to attend the new Harry Styles concert. Unfortunately, six friends cancel last minute due to the u. You and your remaining friends still attend the concert and split the original cost of $4000$ dollars equally. What percent of the total cost does each remaining individual have to pay?
[b]p2.[/b] Find the number distinct $4$ digit numbers that can be formed by arranging the digits of $2021$.
[b]p3.[/b] On a plane, Darnay draws a triangle and a rectangle such that each side of the triangle intersects each side of the rectangle at no more than one point. What is the largest possible number of points of intersection of the two shapes?
[b]p4.[/b] Joy is thinking of a two-digit number. Her hint is that her number is the sum of two $2$-digit perfect squares $x_1$ and $x_2$ such that exactly one of $x_i - 1$ and $x_i + 1$ is prime for each $i = 1, 2$. What is Joy's number?
[b]p5.[/b] At the North Pole, ice tends to grow in parallelogram structures of area $60$. On the other hand, at the South Pole, ice grows in right triangular structures, in which each triangular and parallelogram structure have the same area. If every ice triangle $ABC$ has legs $\overline{AB}$ and $\overline{AC}$ that are integer lengths, how many distinct possible lengths are there for the hypotenuse $\overline{BC}$?
[b]p6.[/b] Carlsen has some squares and equilateral triangles, all of side length $1$. When he adds up the interior angles of all shapes, he gets $1800^o$. When he adds up the perimeters of all shapes, he gets $24$. How many squares does he have?
[b]p7.[/b] Vijay wants to hide his gold bars by melting and mixing them into a water bottle. He adds $100$ grams of liquid gold to $100$ grams of water. His liquefied gold bars have a density of $20$ g/ml and water has a density of $1$ g/ml. Given that the density of the mixture in g/mL can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute the sum $m + n$. (Note: density is mass divided by volume, gram (g) is unit of mass and ml is unit of volume. Further, assume the volume of the mixture is the sum of the volumes of the components.)
[b]p8.[/b] Julius Caesar has epilepsy. Specifically, if he sees $3$ or more flashes of light within a $0.1$ second time frame, he will have a seizure. His enemy Brutus has imprisoned him in a room with $4$ screens, which flash exactly every $4$, $5$, $6$, and $7$ seconds, respectively. The screens all flash at once, and $105$ seconds later, Caesar opens his eyes. How many seconds after he opened his eyes will Caesar first get a seizure?
[b]p9.[/b] Angela has a large collection of glass statues. One day, she was bored and decided to use some of her statues to create an entirely new one. She melted a sphere with radius $12$ and a cone with height of 18 and base radius of $2$. If Angela wishes to create a new cone with a base radius $2$, what would the the height of the newly created cone be?
[b]p10.[/b] Find the smallest positive integer $N$ satisfying these properties:
(a) No perfect square besides $1$ divides $N$.
(b) $N$ has exactly $16$ positive integer factors.
[b]p11.[/b] The probability of a basketball player making a free throw is $\frac15$. The probability that she gets exactly $2$ out of $4$ free throws in her next game can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m + n$.
[b]p12.[/b] A new donut shop has $1000$ boxes of donuts and $1000$ customers arriving. The boxes are numbered $1$ to $1000$. Initially, all boxes are lined up by increasing numbering and closed. On the first day of opening, the first customer enters the shop and opens all the boxes for taste testing. On the second day of opening, the second customer enters and closes every box with an even number. The third customer then "reverses" (if closed, they open it and if open, they close it) every box numbered with a multiple of three, and so on, until all $1000$ customers get kicked out for having entered the shop and reversing their set of boxes. What is the number on the sixth box that is left open?
[b]p13.[/b] For an assignment in his math class, Michael must stare at an analog clock for a period of $7$ hours. He must record the times at which the minute hand and hour hand form an angle of exactly $90^o$, and he will receive $1$ point for every time he records correctly. What is the maximum number of points Michael can earn on his assignment?
[b]p14.[/b] The graphs of $y = x^3 +5x^2 +4x-3$ and $y = -\frac15 x+1$ intersect at three points in the Cartesian plane. Find the sum of the $y$-coordinates of these three points.
[b]p15.[/b] In the quarterfinals of a single elimination countdown competition, the $8$ competitors are all of equal skill. When any $2$ of them compete, there is exactly a $50\%$ chance of either one winning. If the initial bracket is randomized, the probability that two of the competitors, Daniel and Anish, face off in one of the rounds can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p$, $q$. Find $p + q$.
[b]p16.[/b] How many positive integers less than or equal to $1000$ are not divisible by any of the numbers $2$, $3$, $5$ and $11$?
[b]p17.[/b] A strictly increasing geometric sequence of positive integers $a_1, a_2, a_3,...$ satisfies the following properties:
(a) Each term leaves a common remainder when divided by $7$
(b) The first term is an integer from $1$ to $6$
(c) The common ratio is an perfect square
Let $N$ be the smallest possible value of $\frac{a_{2021}}{a_1}$. Find the remainder when $N$ is divided by $100$.
[b]p18.[/b] Suppose $p(x) = x^3 - 11x^2 + 36x - 36$ has roots $r, s,t$. Find %\frac{r^2 + s^2}{t}+\frac{s^2 + t^2}{r}+\frac{t^2 + r^2}{s}%.
[b]p19.[/b] Let $a, b \le 2021$ be positive integers. Given that $ab^2$ and $a^2b$ are both perfect squares, let $G = gcd(a, b)$. Find the sum of all possible values of $G$.
[b]p20.[/b] Jessica rolls six fair standard six-sided dice at the same time. Given that she rolled at least four $2$'s and exactly one $3$, the probability that all six dice display prime numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. What is $m + n$?
[b]p21.[/b] Let $a, b, c$ be numbers such $a + b + c$ is real and the following equations hold:
$$a^3 + b^3 + c^3 = 25$$
$$\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}= 1$$
$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{25}{9}$$
The value of $a + b + c$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. Find $m + n$.
[b]p22.[/b] Let $\omega$ be a circle and $P$ be a point outside $\omega$. Let line $\ell$ pass through $P$ and intersect $\omega$ at points $A,B$ and with $PA < PB$ and let $m$ be another line passing through $P$ intersecting $\omega$ at points $C,D$ with $PC < PD$. Let X be the intersection of $AD$ and $BC$. Given that $\frac{PC}{CD}=\frac23$, $\frac{PC}{PA}=\frac45$, and $\frac{[ABC]}{[ACD]}=\frac79$,the value of $\frac{[BXD]}{[BXA]}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$: Find $m + n$.
[b]p23.[/b] Define the operation $a \circ b =\frac{a^2 + 2ab + a - 12}{b}$. Given that $1 \circ (2 \circ (3 \circ (... 2019 \circ (2020 \circ 2021)))...)$ can be expressed as $-\frac{a}{b}$ for some relatively prime positive integers $a,b$, compute $a + b$.
[b]p24.[/b] Find the largest integer $n \le 2021$ for which $5^{n-3} | (n!)^4$
[b]p25.[/b] On the Cartesian plane, a line $\ell$ intersects a parabola with a vertical axis of symmetry at $(0, 5)$ and $(4, 4)$. The focus $F$ of the parabola lies below $\ell$, and the distance from $F$ to $\ell$ is $\frac{16}{\sqrt{17}}$. Let the vertex of the parabola be $(x, y)$. The sum of all possible values of $y$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].