This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2003 AIME Problems, 11

An angle $x$ is chosen at random from the interval $0^\circ < x < 90^\circ$. Let $p$ be the probability that the numbers $\sin^2 x$, $\cos^2 x$, and $\sin x \cos x$ are not the lengths of the sides of a triangle. Given that $p = d/n$, where $d$ is the number of degrees in $\arctan m$ and $m$ and $n$ are positive integers with $m + n < 1000$, find $m + n$.

2007 Hanoi Open Mathematics Competitions, 10

Tags: algebra
Let a; b; c be positive real numbers such that $\frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab} \geq 1$. Prove that $\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab} \geq 1$.

1965 AMC 12/AHSME, 7

The sum of the reciprocals of the roots of the equation $ ax^2 \plus{} bx \plus{} c \equal{} 0$ is: $ \textbf{(A)}\ \frac {1}{a} \plus{} \frac {1}{b} \qquad \textbf{(B)}\ \minus{} \frac {c}{b} \qquad \textbf{(C)}\ \frac {b}{c} \qquad \textbf{(D)}\ \minus{} \frac {a}{b} \qquad \textbf{(E)}\ \minus{} \frac {b}{c}$

1971 All Soviet Union Mathematical Olympiad, 151

Some numbers are written along the ring. If inequality $(a-d)(b-c) < 0$ is held for the four arbitrary numbers in sequence $a,b,c,d$, you have to change the numbers $b$ and $c$ places. Prove that you will have to do this operation finite number of times.

2004 India IMO Training Camp, 3

Suppose the polynomial $P(x) \equiv x^3 + ax^2 + bx +c$ has only real zeroes and let $Q(x) \equiv 5x^2 - 16x + 2004$. Assume that $P(Q(x)) = 0$ has no real roots. Prove that $P(2004) > 2004$

2021 Turkey Team Selection Test, 6

For which positive integers $n$, one can find real numbers $x_1,x_2,\cdots ,x_n$ such that $$\dfrac{x_1^2+x_2^2+\cdots+x_n^2}{\left(x_1+2x_2+\cdots+nx_n\right)^2}=\dfrac{27}{4n(n+1)(2n+1)}$$ and $i\leq x_i\leq 2i$ for all $i=1,2,\cdots ,n$ ?

1979 Chisinau City MO, 171

Tags: trinomial , algebra
Are there numbers $a, b$ such that $| a -b |\le 1979$ and the equation $ax^2 + (a + b) x + b = x$ has no roots?

1993 All-Russian Olympiad, 4

If $ \{a_k\}$ is a sequence of real numbers, call the sequence $ \{a'_k\}$ defined by $ a_k' \equal{} \frac {a_k \plus{} a_{k \plus{} 1}}2$ the [i]average sequence[/i] of $ \{a_k\}$. Consider the sequences $ \{a_k\}$; $ \{a_k'\}$ - [i]average sequence[/i] of $ \{a_k\}$; $ \{a_k''\}$ - average sequence of $ \{a_k'\}$ and so on. If all these sequences consist only of integers, then $ \{a_k\}$ is called [i]Good[/i]. Prove that if $ \{x_k\}$ is a [i]good[/i] sequence, then $ \{x_k^2\}$ is also [i]good[/i].

2017 Azerbaijan Team Selection Test, 3

Tags: fraction , algebra
Consider fractions $\frac{a}{b}$ where $a$ and $b$ are positive integers. (a) Prove that for every positive integer $n$, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}+1$. (b) Show that there are infinitely many positive integers $n$ such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}$.

2011 Saudi Arabia BMO TST, 2

Let $a_1,a_2,..., a_n$ be real numbers such that $a_1 + a_2 + ... + a_n = 0$ and $|a_1| + |a_2 | + ... + |a_n | = 1$. Prove that $$ |a_1 + 2a_2 + ... + na_n | \le \frac{n-1}{2} $$

2021 Purple Comet Problems, 9

Tags: algebra
Let $a$ and $b$ be positive real numbers satisfying $$a -12b = 11 -\frac{100}{a} \,\,\,\,and \,\,\,\, a -\frac{12}{b}= 4 -\frac{100}{a}.$$ Then $a + b = \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2003 IMO Shortlist, 3

Consider pairs of the sequences of positive real numbers \[a_1\geq a_2\geq a_3\geq\cdots,\qquad b_1\geq b_2\geq b_3\geq\cdots\] and the sums \[A_n = a_1 + \cdots + a_n,\quad B_n = b_1 + \cdots + b_n;\qquad n = 1,2,\ldots.\] For any pair define $c_n = \min\{a_i,b_i\}$ and $C_n = c_1 + \cdots + c_n$, $n=1,2,\ldots$. (1) Does there exist a pair $(a_i)_{i\geq 1}$, $(b_i)_{i\geq 1}$ such that the sequences $(A_n)_{n\geq 1}$ and $(B_n)_{n\geq 1}$ are unbounded while the sequence $(C_n)_{n\geq 1}$ is bounded? (2) Does the answer to question (1) change by assuming additionally that $b_i = 1/i$, $i=1,2,\ldots$? Justify your answer.

2002 Vietnam National Olympiad, 1

Let $ a$, $ b$, $ c$ be real numbers for which the polynomial $ x^3 \plus{} ax^2 \plus{} bx \plus{} c$ has three real roots. Prove that \[ 12ab \plus{} 27c \le 6a^3 \plus{} 10\left(a^2 \minus{} 2b\right)^{\frac {3}{2}}\] When does equality occur?

2015 AMC 10, 16

If $y+4 = (x-2)^2, x+4 = (y-2)^2$, and $x \neq y$, what is the value of $x^2+y^2$? $ \textbf{(A) }10\qquad\textbf{(B) }15\qquad\textbf{(C) }20\qquad\textbf{(D) }25\qquad\textbf{(E) }\text{30} $

2021 LMT Spring, B1

Tags: algebra
Given that the expression $\frac{20^{21}}{20^{20}} +\frac{20^{20}}{20^{21}}$ can be written in the form $m/n$ , where $m$ and $n$ are relatively prime positive integers, find $m +n$. [i]Proposed by Ada Tsui[/i]

Math Hour Olympiad, Grades 5-7, 2012.57

[u]Round 1[/u] [b]p1.[/b] Tom and Jerry stole a chain of $7$ sausages and are now trying to divide the bounty. They take turns biting the sausages at one of the connections. When one of them breaks a connection, he may eat any single sausages that may fall out. Tom takes the first bite. Each of them is trying his best to eat more sausages than his opponent. Who will succeed? [b]p2. [/b]The King of the Mountain Dwarves wants to light his underground throne room by placing several torches so that the whole room is lit. The king, being very miserly, wants to use as few torches as possible. What is the least number of torches he could use? (You should show why he can't do it with a smaller number of torches.) This is the shape of the throne room: [img]https://cdn.artofproblemsolving.com/attachments/b/2/719daafd91fc9a11b8e147bb24cb66b7a684e9.png[/img] Also, the walls in all rooms are lined with velvet and do not reflect the light. For example, the picture on the right shows how another room in the castle is partially lit. [img]https://cdn.artofproblemsolving.com/attachments/5/1/0f6971274e8c2ff3f2d0fa484b567ff3d631fb.png[/img] [b]p3.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p4.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p5.[/b] There are $40$ piles of stones with an equal number of stones in each. Two players, Ann and Bob, can select any two piles of stones and combine them into one bigger pile, as long as this pile would not contain more than half of all the stones on the table. A player who can’t make a move loses. Ann goes first. Who wins? [u]Round 2[/u] [b]p6.[/b] In a galaxy far, far away, there is a United Galactic Senate with $100$ Senators. Each Senator has no more than three enemies. Tired of their arguments, the Senators want to split into two parties so that each Senator has no more than one enemy in his own party. Prove that they can do this. (Note: If $A$ is an enemy of $B$, then $B$ is an enemy of $A$.) [b]p7.[/b] Harry has a $2012$ by $2012$ chessboard and checkers numbered from $1$ to $2012 \times 2012$. Can he place all the checkers on the chessboard in such a way that whatever row and column Professor Snape picks, Harry will be able to choose three checkers from this row and this column such that the product of the numbers on two of the checkers will be equal to the number on the third? [img]https://cdn.artofproblemsolving.com/attachments/b/3/a87d559b340ceefee485f41c8fe44ae9a59113.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Finnish National High School Mathematics Competition, 3

Solve the group of equations: \[\begin{cases} (x + y)^3 = z \\ (y + z)^3 = x \\ (z + x)^3 = y \end{cases}\]

1982 Spain Mathematical Olympiad, 1

On the puzzle page of a newspaper this problem is proposed: “Two children, Antonio and José, have $160$ comics. Antonio counts his by $7$ by $7$ and there are $4$ left over. José counts his $ 8$ by $8$ and he also has $4$ left over. How many comics does he have each?" In the next issue of the newspaper this solution is given: “Antonio has $60$ comics and José has $100$.” Analyze this solution and indicate what a mathematician would do with this problem.

2022 CMIMC, 2.7

For polynomials $P(x) = a_nx^n + \cdots + a_0$, let $f(P) = a_n\cdots a_0$ be the product of the coefficients of $P$. The polynomials $P_1,P_2,P_3,Q$ satisfy $P_1(x) = (x-a)(x-b)$, $P_2(x) = (x-a)(x-c)$, $P_3(x) = (x-b)(x-c)$, $Q(x) = (x-a)(x-b)(x-c)$ for some complex numbers $a,b,c$. Given $f(Q) = 8$, $f(P_1) + f(P_2) + f(P_3) = 10$, and $abc>0$, find the value of $f(P_1)f(P_2)f(P_3)$. [i]Proposed by Justin Hsieh[/i]

2006 Iran Team Selection Test, 1

We have $n$ points in the plane, no three on a line. We call $k$ of them good if they form a convex polygon and there is no other point in the convex polygon. Suppose that for a fixed $k$ the number of $k$ good points is $c_k$. Show that the following sum is independent of the structure of points and only depends on $n$ : \[ \sum_{i=3}^n (-1)^i c_i \]

2024 Bulgarian Autumn Math Competition, 10.1

Find all real solutions to the system of equations: $$\begin{cases} (x^2+xy+y^2)\sqrt{x^2+y^2} = 88 \\ (x^2-xy+y^2)\sqrt{x^2+y^2} = 40 \end{cases}$$

2023 UMD Math Competition Part I, #14

Tags: quadratic , algebra
Let $m \neq -1$ be a real number. Consider the quadratic equation $$ (m + 1)x^2 + 4mx + m - 3 =0. $$ Which of the following must be true? $\quad\rm(I)$ Both roots of this equation must be real. $\quad\rm(II)$ If both roots are real, then one of the roots must be less than $-1.$ $\quad\rm(III)$ If both roots are real, then one of the roots must be larger than $1.$ $$ \mathrm a. ~ \text{Only} ~(\mathrm I)\rm \qquad \mathrm b. ~(I)~and~(II)\qquad \mathrm c. ~Only~(III) \qquad \mathrm d. ~Both~(I)~and~(III) \qquad \mathrm e. ~(I), (II),~and~(III) $$

KoMaL A Problems 2020/2021, A. 801

For which values of positive integer $m$ is it possible to find polynomials $P, Q\in\mathbb{C} [x]$, with degrees at least two, such that \[x(x+1)\cdots(x+m-1)=P(Q(x)).\][i]Proposed by Navid Safaei, Tehran[/i]

2015 Hanoi Open Mathematics Competitions, 6

Let $a, b, c \in [-1, 1] $ such that $1 + 2abc \ge a^2 + b^2 + c^2$. Prove that $1 + 2a^2b^2c^2 \ge a^4 + b^4 + c^4$.

2005 Thailand Mathematical Olympiad, 8

For each subset $T$ of $S = \{1, 2, ... , 7\}$, the result $r(T)$ of T is computed as follows: the elements of $T$ are written, largest to smallest, and alternating signs $(+, -)$ starting with $+$ are put in front of each number. The value of the resulting expression is$ r(T)$. (For example, for $T =\{2, 4, 7\}$, we have $r(T) = +7 - 4 + 2 = 5$.) Compute the sum of $r(T)$ as $T$ ranges over all subsets of $S$.