This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2009 China Team Selection Test, 2

Find all integers $ n\ge 2$ having the following property: for any $ k$ integers $ a_{1},a_{2},\cdots,a_{k}$ which aren't congruent to each other (modulo $ n$), there exists an integer polynomial $ f(x)$ such that congruence equation $ f(x)\equiv 0 (mod n)$ exactly has $ k$ roots $ x\equiv a_{1},a_{2},\cdots,a_{k} (mod n).$

2021 BMT, 10

Tags: algebra
Given a positive integer $n$, define $f_n(x)$ to be the number of square-free positive integers $k$ such that $kx \le n$. Then, define $v_(n)$ as $$v(n) =\sum^n_{i=1}\sum^n_{j=1}f_n(i^2)- 6f_n (ij) + f_n(j^2).$$ Compute the largest positive integer $2 \le n \le 100$ for which $v(n)-v(n-1)$ is negative. (Note: A square-free positive integer is a positive integer that is not divisible by the square of any prime.)

2012 District Olympiad, 3

Let be a sequence of natural numbers $ \left( a_n \right)_{n\ge 1} $ such that $ a_n\le n $ for all natural numbers $ n, $ and $$ \sum_{j=1}^{k-1} \cos \frac{\pi a_j}{k} =0, $$ for all natural $ k\ge 2. $ [b]a)[/b] Find $ a_2. $ [b]b)[/b] Determine this sequence.

2005 Putnam, B6

Let $S_n$ denote the set of all permutations of the numbers $1,2,\dots,n.$ For $\pi\in S_n,$ let $\sigma(\pi)=1$ if $\pi$ is an even permutation and $\sigma(\pi)=-1$ if $\pi$ is an odd permutation. Also, let $v(\pi)$ denote the number of fixed points of $\pi.$ Show that \[ \sum_{\pi\in S_n}\frac{\sigma(\pi)}{v(\pi)+1}=(-1)^{n+1}\frac{n}{n+1}. \]

2014 Taiwan TST Round 2, 1

Tags: sequence , algebra
Let $n$ be a positive integer and let $a_1, \ldots, a_{n-1} $ be arbitrary real numbers. Define the sequences $u_0, \ldots, u_n $ and $v_0, \ldots, v_n $ inductively by $u_0 = u_1 = v_0 = v_1 = 1$, and $u_{k+1} = u_k + a_k u_{k-1}$, $v_{k+1} = v_k + a_{n-k} v_{k-1}$ for $k=1, \ldots, n-1.$ Prove that $u_n = v_n.$

2005 USA Team Selection Test, 3

We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.

1984 Iran MO (2nd round), 1

Let $f$ and $g$ be two functions such that \[f(x)=\frac{1}{\lfloor | x | \rfloor}, \quad g(x)=\frac{1}{|\lfloor x \rfloor |}.\] Find the domains of $f$ and $g$ and then prove that \[\lim_{x \to -1^+} f(x)= \lim_{x \to 1^- } g(x).\]

2002 Vietnam Team Selection Test, 2

Find all polynomials $P(x)$ with integer coefficients such that the polynomial \[ Q(x)=(x^2+6x+10) \cdot P^2(x)-1 \] is the square of a polynomial with integer coefficients.

2019 Taiwan APMO Preliminary Test, P3

Let $\triangle ABC$ be an acute triangle, $H$ is its orthocenter. $\overrightarrow{AH},\overrightarrow{BH},\overrightarrow{CH}$ intersect $\triangle ABC$'s circumcircle at $A',B',C'$ respectively. Find the range (minimum value and the maximum upper bound) of $$\dfrac{AH}{AA'}+\dfrac{BH}{BB'}+\dfrac{CH}{CC'}$$

1968 IMO Shortlist, 19

We are given a fixed point on the circle of radius $1$, and going from this point along the circumference in the positive direction on curved distances $0, 1, 2, \ldots $ from it we obtain points with abscisas $n = 0, 1, 2, .\ldots$ respectively. How many points among them should we take to ensure that some two of them are less than the distance $\frac 15$ apart ?

1980 AMC 12/AHSME, 24

For some real number $r$, the polynomial $8x^3-4x^2-42x+45$ is divisible by $(x-r)^2$. Which of the following numbers is closest to $r$? $\text{(A)} \ 1.22 \qquad \text{(B)} \ 1.32 \qquad \text{(C)} \ 1.42 \qquad \text{(D)} \ 1.52 \qquad \text{(E)} \ 1.62$

2006 Estonia Team Selection Test, 5

Let $a_1, a_2, a_3, ...$ be a sequence of positive real numbers. Prove that for any positive integer $n$ the inequality holds $\sum_{i=1}^n b_i^2 \le 4 \sum_{i=1}^n a_i^2$ where $b_i$ is the arithmetic mean of the numbers $a_1, a_2, ..., a_n$

2019 ISI Entrance Examination, 7

Let $f$ be a polynomial with integer coefficients. Define $$a_1 = f(0)~,~a_2 = f(a_1) = f(f(0))~,$$ and $~a_n = f(a_{n-1})$ for $n \geqslant 3$. If there exists a natural number $k \geqslant 3$ such that $a_k = 0$, then prove that either $a_1=0$ or $a_2=0$.

2003 China Team Selection Test, 1

Find all functions $f: \mathbb{Z}^+\to \mathbb{R}$, which satisfies $f(n+1)\geq f(n)$ for all $n\geq 1$ and $f(mn)=f(m)f(n)$ for all $(m,n)=1$.

2013 Romanian Masters In Mathematics, 2

Does there exist a pair $(g,h)$ of functions $g,h:\mathbb{R}\rightarrow\mathbb{R}$ such that the only function $f:\mathbb{R}\rightarrow\mathbb{R}$ satisfying $f(g(x))=g(f(x))$ and $f(h(x))=h(f(x))$ for all $x\in\mathbb{R}$ is identity function $f(x)\equiv x$?

2009 Kurschak Competition, 3

Tags: function , algebra
Find all functions $f:\mathbb{Z}\to \mathbb{Q}$ with the following properties: if $f(x)<c<f(y)$ for some rational $c$, then $f$ takes on the value of $c$, and \[f(x)+f(y)+f(z)=f(x)f(y)f(z)\] whenever $x+y+z=0$.

1980 AMC 12/AHSME, 8

How many pairs $(a,b)$ of non-zero real numbers satisfy the equation \[ \frac{1}{a} + \frac{1}{b} = \frac{1}{a+b}? \] $\text{(A)} \ \text{none} \qquad \text{(B)} \ 1 \qquad \text{(C)} \ 2 \qquad \text{(D)} \ \text{one pair for each} ~b \neq 0$ $\text{(E)} \ \text{two pairs for each} ~b \neq 0$

2022 BMT, 3

Tags: algebra
The polynomial $ax^2 + bx + c$ crosses the $x$-axis at $x = 10$ and $x = -6$ and crosses the $y$-axis at $y = 10$. Compute $a + b + c$.

2020 ABMC, Accuracy

[b]p1.[/b] James has $8$ Instagram accounts, $3$ Facebook accounts, $4$ QQ accounts, and $3$ YouTube accounts. If each Instagram account has $19$ pictures, each Facebook account has $5$ pictures and $9$ videos, each QQ account has a total of $17$ pictures, and each YouTube account has $13$ videos and no pictures, how many pictures in total does James have in all these accounts? [b]p2.[/b] If Poonam can trade $7$ shanks for $4$ shinks, and she can trade $10$ shinks for $17$ shenks. How many shenks can Poonam get if she traded all of her $105$ shanks? [b]p3.[/b] Jerry has a bag with $3$ red marbles, $5$ blue marbles and $2$ white marbles. If Jerry randomly picks two marbles from the bag without replacement, the probability that he gets two different colors can be expressed as a fraction $\frac{m}{n}$ in lowest terms. What is $m + n$? [b]p4.[/b] Bob's favorite number is between $1200$ and $4000$, divisible by $5$, has the same units and hundreds digits, and the same tens and thousands digits. If his favorite number is even and not divisible by $3$, what is his favorite number? [b]p5.[/b] Consider a unit cube $ABCDEFGH$. Let $O$ be the center of the face $EFGH$. The length of $BO$ can be expressed in the form $\frac{\sqrt{a}}{b}$, where $a$ and $b$ are simplified to lowest terms. What is $a + b$? [b]p6.[/b] Mr. Eddie Wang is a crazy rich boss who owns a giant company in Singapore. Even though Mr. Wang appears friendly, he finds great joy in firing his employees. His immediately fires them when they say "hello" and/or "goodbye" to him. It is well known that $1/2$ of the total people say "hello" and/or "goodbye" to him everyday. If Mr. Wang had $2050$ employees at the end of yesterday, and he hires $2$ new employees at the beginning of each day, in how many days will Mr. Wang first only have $6$ employees left? [b]p7.[/b] In $\vartriangle ABC$, $AB = 5$, $AC = 6$. Let $D,E,F$ be the midpoints of $\overline{BC}$, $\overline{AC}$, $\overline{AB}$, respectively. Let $X$ be the foot of the altitude from $D$ to $\overline{EF}$. Let $\overline{AX}$ intersect $\overline{BC}$ at $Y$ . Given $DY = 1$, the length of $BC$ is $\frac{p}{q}$ for relatively prime positive integers $p, q$: Find $p + q$. [b]p8.[/b] Given $\frac{1}{2006} = \frac{1}{a} + \frac{1}{b}$ where $a$ is a $4$ digit positive integer and $b$ is a $6$ digit positive integer, find the smallest possible value of $b$. [b]p9.[/b] Pocky the postman has unlimited stamps worth $5$, $6$ and $7$ cents. However, his post office has two very odd requirements: On each envelope, an odd number of $7$ cent stamps must be used, and the total number of stamps used must also be odd. What is the largest amount of postage money Pocky cannot make with his stamps, in cents? [b]p10.[/b] Let $ABCDEF$ be a regular hexagon with side length $2$. Let $G$ be the midpoint of side $DE$. Now let $O$ be the intersection of $BG$ and $CF$. The radius of the circle inscribed in triangle $BOC$ can be expressed in the form $\frac{a\sqrt{b}-\sqrt{c}}{d} $ where $a$, $b$, $c$, $d$ are simplified to lowest terms. What is $a + b + c + d$? [b]p11.[/b] Estimation (Tiebreaker): What is the total number of characters in all of the participants' email addresses in the Accuracy Round? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 National Olympiad First Round, 28

How many positive roots does polynomial $x^{2002} + a_{2001}x^{2001} + a_{2000}x^{2000} + \cdots + a_1x + a_0$ have such that $a_{2001} = 2002$ and $a_k = -k - 1$ for $0\leq k \leq 2000$? $ \textbf{a)}\ 0 \qquad\textbf{b)}\ 1 \qquad\textbf{c)}\ 2 \qquad\textbf{d)}\ 1001 \qquad\textbf{e)}\ 2002 $

2004 Nordic, 3

Tags: algebra
Given a finite sequence $x_{1,1}, x_{2,1}, \dots , x_{n,1}$ of integers $(n\ge 2)$, not all equal, define the sequences $x_{1,k}, \dots , x_{n,k}$ by \[ x_{i,k+1}=\frac{1}{2}(x_{i,k}+x_{i+1,k})\quad\text{where }x_{n+1,k}=x_{1,k}.\] Show that if $n$ is odd, then not all $x_{j,k}$ are integers. Is this also true for even $n$?

2009 All-Russian Olympiad, 1

The denominators of two irreducible fractions are 600 and 700. Find the minimum value of the denominator of their sum (written as an irreducible fraction).

2015 Thailand TSTST, 1

Tags: algebra
Let $a,b,c$ be a real numbers such that this equations: $a^2x + b^2y + c^2z = 1$ $xy + yz + xz = 1$ have only one solution $(x, y, z)$ in real numbers. Prove that $a, b, c$ are sides of the triangle

2024 Israel TST, P3

Find all continuous functions $f\colon \mathbb{R}_{>0}\to \mathbb{R}_{\geq 1}$ for which the following equation holds for all positive reals $x$, $y$: \[f\left(\frac{f(x)}{y}\right)-f\left(\frac{f(y)}{x}\right)=xy\left(f(x+1)-f(y+1)\right)\]

2014 JBMO Shortlist, 9

Let $n$ a positive integer and let $x_1, \ldots, x_n, y_1, \ldots, y_n$ real positive numbers such that $x_1+\ldots+x_n=y_1+\ldots+y_n=1$. Prove that: $$|x_1-y_1|+\ldots+|x_n-y_n|\leq 2-\underset{1\leq i\leq n}{min} \;\dfrac{x_i}{y_i}-\underset{1\leq i\leq n}{min} \;\dfrac{y_i}{x_i}$$