This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1964 Swedish Mathematical Competition, 5

$a_1, a_2, ... , a_n$ are constants such that $f(x) = 1 + a_1 cos x + a_2 cos 2x + ...+ a_n cos nx \ge 0$ for all $x$. We seek estimates of $a_1$. If $n = 2$, find the smallest and largest possible values of $a_1$. Find corresponding estimates for other values of $n$.

2017 Harvard-MIT Mathematics Tournament, 3

Tags: algebra
[b]E[/b]milia wishes to create a basic solution with 7% hydroxide (OH) ions. She has three solutions of different bases available: 10% rubidium hydroxide (Rb(OH)), 8% cesium hydroxide (Cs(OH)), and 5% francium hydroxide (Fr(OH)). (The Rb(OH) solution has both 10% Rb ions and 10% OH ions, and similar for the other solutions.) Since francium is highly radioactive, its concentration in the final solution should not exceed 2%. What is the highest possible concentration of rubidium in her solution?

1963 IMO Shortlist, 4

Find all solutions $x_1, x_2, x_3, x_4, x_5$ of the system \[ x_5+x_2=yx_1 \] \[ x_1+x_3=yx_2 \] \[ x_2+x_4=yx_3 \] \[ x_3+x_5=yx_4 \] \[ x_4+x_1=yx_5 \] where $y$ is a parameter.

2015 Switzerland Team Selection Test, 2

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2012 Indonesia MO, 2

Tags: function , algebra
Let $\mathbb{R}^+$ be the set of all positive real numbers. Show that there is no function $f:\mathbb{R}^+ \to \mathbb{R}^+$ satisfying \[f(x+y)=f(x)+f(y)+\dfrac{1}{2012}\] for all positive real numbers $x$ and $y$. [i]Proposer: Fajar Yuliawan[/i]

Russian TST 2017, P2

Find all functions $f:(0,\infty)\rightarrow (0,\infty)$ such that for any $x,y\in (0,\infty)$, $$xf(x^2)f(f(y)) + f(yf(x)) = f(xy) \left(f(f(x^2)) + f(f(y^2))\right).$$

2009 Indonesia TST, 4

Tags: algebra , function
Let $ S$ be the set of nonnegative real numbers. Find all functions $ f: S\rightarrow S$ which satisfy $ f(x\plus{}y\minus{}z)\plus{}f(2\sqrt{xz})\plus{}f(2\sqrt{yz})\equal{}f(x\plus{}y\plus{}z)$ for all nonnegative $ x,y,z$ with $ x\plus{}y\ge z$.

2016 BMT Spring, 6

Tags: algebra , calculus
Amy is traveling on the $xy$-plane in a spaceship where her motion is described by the following equation $xe^y = ye^x$. Given that her $x$-component of velocity is a constant $3$ mph , the magnitude of her velocity as she approaches $(1,-1)$ can be expressed as $\sqrt{\frac{a + be^4}{ c + de^2}}$ . Find $\frac{ac}{bd}$ . (You may assume that the initial conditions do allow her to approach $(1,-1)$)

1996 Austrian-Polish Competition, 6

Given natural numbers $n > k > 1$, find all real solutions $x_1,..., x_n$ of the system $$x_i^3(x_i^2 + x_{i+1}^2+... +x_{i+k-1}^2) = x_{i-1}^2$$ for 1 $\le i \le n$. Here $x_{n+i} = x_i$ for all$ i$.

2000 All-Russian Olympiad Regional Round, 9.1

Tags: trinomial , algebra
Misha solved the equation $x^2 + ax + b = 0$ and told Dima the set of four numbers - two roots and two coefficients of this equation (but not said which of them are roots and which are coefficients). Will he be able to Dima, find out what equation Misha solved if all the numbers in the set turned out to be different?

2017 ABMC, Team

[u]Round 1[/u] [b]1.1.[/b] A circle has a circumference of $20\pi$ inches. Find its area in terms of $\pi$. [b]1.2.[/b] Let $x, y$ be the solution to the system of equations: $x^2 + y^2 = 10 \,\,\, , \,\,\, x = 3y$. Find $x + y$ where both $x$ and $y$ are greater than zero. [b]1. 3.[/b] Chris deposits $\$ 100$ in a bank account. He then spends $30\%$ of the money in the account on biology books. The next week, he earns some money and the amount of money he has in his account increases by $30 \%$. What percent of his original money does he now have? [u]Round 2[/u] [b]2.1.[/b] The bell rings every $45$ minutes. If the bell rings right before the first class and right after the last class, how many hours are there in a school day with $9$ bells? [b]2.2.[/b] The middle school math team has $9$ members. They want to send $2$ teams to ABMC this year: one full team containing 6 members and one half team containing the other $3$ members. In how many ways can they choose a $6$ person team and a $3$ person team? [b]2.3.[/b] Find the sum: $$1 + (1 - 1)(1^2 + 1 + 1) + (2 - 1)(2^2 + 2 + 1) + (3 - 1)(3^2 + 3 + 1) + ...· + (8 - 1)(8^2 + 8 + 1) + (9 - 1)(9^2 + 9 + 1).$$ [u]Round 3[/u] [b]3.1.[/b] In square $ABHI$, another square $BIEF$ is constructed with diagonal $BI$ (of $ABHI$) as its side. What is the ratio of the area of $BIEF$ to the area of $ABHI$? [b]3.2.[/b] How many ordered pairs of positive integers $(a, b)$ are there such that $a$ and $b$ are both less than $5$, and the value of $ab + 1$ is prime? Recall that, for example, $(2, 3)$ and $(3, 2)$ are considered different ordered pairs. [b]3.3.[/b] Kate Lin drops her right circular ice cream cone with a height of $ 12$ inches and a radius of $5$ inches onto the ground. The cone lands on its side (along the slant height). Determine the distance between the highest point on the cone to the ground. [u]Round 4[/u] [b]4.1.[/b] In a Museum of Fine Mathematics, four sculptures of Euler, Euclid, Fermat, and Allen, one for each statue, are nailed to the ground in a circle. Bob would like to fully paint each statue a single color such that no two adjacent statues are blue. If Bob only has only red and blue paint, in how many ways can he paint the four statues? [b]4.2.[/b] Geo has two circles, one of radius 3 inches and the other of radius $18$ inches, whose centers are $25$ inches apart. Let $A$ be a point on the circle of radius 3 inches, and B be a point on the circle of radius $18$ inches. If segment $\overline{AB}$ is a tangent to both circles that does not intersect the line connecting their centers, find the length of $\overline{AB}$. [b]4.3.[/b] Find the units digit to $2017^{2017!}$. [u]Round 5[/u] [b]5.1.[/b] Given equilateral triangle $\gamma_1$ with vertices $A, B, C$, construct square $ABDE$ such that it does not overlap with $\gamma_1$ (meaning one cannot find a point in common within both of the figures). Similarly, construct square $ACFG$ that does not overlap with $\gamma_1$ and square $CBHI$ that does not overlap with $\gamma_1$. Lines $DE$, $FG$, and $HI$ form an equilateral triangle $\gamma_2$. Find the ratio of the area of $\gamma_2$ to $\gamma_1$ as a fraction. [b]5.2.[/b] A decimal that terminates, like $1/2 = 0.5$ has a repeating block of $0$. A number like $1/3 = 0.\overline{3}$ has a repeating block of length $ 1$ since the fraction bar is only over $ 1$ digit. Similarly, the numbers $0.0\overline{3}$ and $0.6\overline{5}$ have repeating blocks of length $ 1$. Find the number of positive integers $n$ less than $100$ such that $1/n$ has a repeating block of length $ 1$. [b]5.3.[/b] For how many positive integers $n$ between $1$ and $2017$ is the fraction $\frac{n + 6}{2n + 6}$ irreducible? (Irreducibility implies that the greatest common factor of the numerator and the denominator is $1$.) [u]Round 6[/u] [b]6.1.[/b] Consider the binary representations of $2017$, $2017 \cdot 2$, $2017 \cdot 2^2$, $2017 \cdot 2^3$, $... $, $2017 \cdot 2^{100}$. If we take a random digit from any of these binary representations, what is the probability that this digit is a $1$ ? [b]6.2.[/b] Aaron is throwing balls at Carlson’s face. These balls are infinitely small and hit Carlson’s face at only $1$ point. Carlson has a flat, circular face with a radius of $5$ inches. Carlson’s mouth is a circle of radius $ 1$ inch and is concentric with his face. The probability of a ball hitting any point on Carlson’s face is directly proportional to its distance from the center of Carlson’s face (so when you are $2$ times farther away from the center, the probability of hitting that point is $2$ times as large). If Aaron throws one ball, and it is guaranteed to hit Carlson’s face, what is the probability that it lands in Carlson’s mouth? [b]6.3.[/b] The birth years of Atharva, his father, and his paternal grandfather form a geometric sequence. The birth years of Atharva’s sister, their mother, and their grandfather (the same grandfather) form an arithmetic sequence. If Atharva’s sister is $5$ years younger than Atharva and all $5$ people were born less than $200$ years ago (from $2017$), what is Atharva’s mother’s birth year? [u]Round 7[/u] [b]7. 1.[/b] A function $f$ is called an “involution” if $f(f(x)) = x$ for all $x$ in the domain of $f$ and the inverse of $f$ exists. Find the total number of involutions $f$ with domain of integers between $ 1$ and $ 8$ inclusive. [b]7.2.[/b] The function $f(x) = x^3$ is an odd function since each point on $f(x)$ corresponds (through a reflection through the origin) to a point on $f(x)$. For example the point $(-2, -8)$ corresponds to $(2, 8)$. The function $g(x) = x^3 - 3x^2 + 6x - 10$ is a “semi-odd” function, since there is a point $(a, b)$ on the function such that each point on $g(x)$ corresponds to a point on $g(x)$ via a reflection over $(a, b)$. Find $(a, b)$. [b]7.3.[/b] A permutations of the numbers $1, 2, 3, 4, 5$ is an arrangement of the numbers. For example, $12345$ is one arrangement, and $32541$ is another arrangement. Another way to look at permutations is to see each permutation as a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$. For example, the permutation $23154$ corresponds to the function f with $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, $f(5) = 4$, and $f(4) = 5$, where $f(x)$ is the $x$-th number of the permutation. But the permutation $23154$ has a cycle of length three since $f(1) = 2$, $f(2) = 3$, $f(3) = 1$, and cycles after $3$ applications of $f$ when regarding a set of $3$ distinct numbers in the domain and range. Similarly the permutation $32541$ has a cycle of length three since $f(5) = 1$, $f(1) = 3$, and $f(3) = 5$. In a permutation of the natural numbers between $ 1$ and $2017$ inclusive, find the expected number of cycles of length $3$. [u]Round 8[/u] [b]8.[/b] Find the number of characters in the problems on the accuracy round test. This does not include spaces and problem numbers (or the periods after problem numbers). For example, “$1$. What’s $5 + 10$?” would contain $11$ characters, namely “$W$,” “$h$,” “$a$,” “$t$,” “$’$,” “$s$,” “$5$,” “$+$,” “$1$,” “$0$,” “?”. If the correct answer is $c$ and your answer is $x$, then your score will be $$\max \left\{ 0, 13 -\left\lceil \frac{|x-c|}{100} \right\rceil \right\}$$ PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1990 IberoAmerican, 3

Let $b$, $c$ be integer numbers, and define $f(x)=(x+b)^2-c$. i) If $p$ is a prime number such that $c$ is divisible by $p$ but not by $p^{2}$, show that for every integer $n$, $f(n)$ is not divisible by $p^{2}$. ii) Let $q \neq 2$ be a prime divisor of $c$. If $q$ divides $f(n)$ for some integer $n$, show that for every integer $r$ there exists an integer $n'$ such that $f(n')$ is divisible by $qr$.

2021 Latvia Baltic Way TST, P3

Find all triplets of real numbers $(x,y,z)$ such that the following equations are satisfied simultaneously: \begin{align*} x^3+y=z^2 \\ y^3+z=x^2 \\ z^3+x =y^2 \end{align*}

2010 District Olympiad, 3

Find all the functions $ f: \mathbb{N}\rightarrow \mathbb{N}$ such that \[ 3f(f(f(n))) \plus{} 2f(f(n)) \plus{} f(n) \equal{} 6n, \quad \forall n\in \mathbb{N}.\]

I Soros Olympiad 1994-95 (Rus + Ukr), 11.1

Prove that for real $x\ge 1$, holds the inequality $$\frac{2^x +3^x }{3^x +4^x} \le \frac57$$

2024 Simon Marais Mathematical Competition, A1

Tags: algebra
Let $a,b,c$ be real number greater than 1 satisfying $$\lfloor a\rfloor b = \lfloor b \rfloor c = \lfloor c\rfloor a.$$Prove that $a=b=c$ (Here, $\lfloor x \rfloor$ denotes the laregst integer that is less than or equal to $x$.)

2013 NIMO Problems, 2

Let $f$ be a non-constant polynomial such that \[ f(x-1) + f(x) + f(x+1) = \frac {f(x)^2}{2013x} \] for all nonzero real numbers $x$. Find the sum of all possible values of $f(1)$. [i]Proposed by Ahaan S. Rungta[/i]

2006 Switzerland Team Selection Test, 1

The three roots of $P(x) = x^3 - 2x^2 - x + 1$ are $a>b>c \in \mathbb{R}$. Find the value of $a^2b+b^2c+c^2a$. :D

2004 Brazil National Olympiad, 3

Tags: induction , algebra
Let $x_1, x_2, ..., x_{2004}$ be a sequence of integer numbers such that $x_{k+3}=x_{k+2}+x_{k}x_{k+1}$, $\forall 1 \le k \le 2001$. Is it possible that more than half of the elements are negative?

2021 Science ON grade X, 3

Consider a real number $a$ that satisfies $a=(a-1)^3$. Prove that there exists an integer $N$ that satisfies $$|a^{2021}-N|<2^{-1000}.$$ [i] (Vlad Robu) [/i]

2016 China Team Selection Test, 1

Let $n$ be an integer greater than $1$, $\alpha$ is a real, $0<\alpha < 2$, $a_1,\ldots ,a_n,c_1,\ldots ,c_n$ are all positive numbers. For $y>0$, let $$f(y)=\left(\sum_{a_i\le y} c_ia_i^2\right)^{\frac{1}{2}}+\left(\sum_{a_i>y} c_ia_i^{\alpha} \right)^{\frac{1}{\alpha}}.$$ If positive number $x$ satisfies $x\ge f(y)$ (for some $y$), prove that $f(x)\le 8^{\frac{1}{\alpha}}\cdot x$.

2020 Durer Math Competition Finals, 5

Let $H = \{-2019,-2018, ...,-1, 0, 1, 2, ..., 2020\}$. Describe all functions $f : H \to H$ for which a) $x = f(x) - f(f(x))$ holds for every $x \in H$. b) $x = f(x) + f(f(x)) - f(f(f(x)))$ holds for every $x \in H$. c) $x = f(x) + 2f(f(x)) - 3f(f(f(x)))$ holds for every $x \in H$. PS. (a) + (b) for category E 1.5, (b) + (c) for category E+ 1.2

2017 Azerbaijan JBMO TST, 2

Tags: vieta , algebra
Let $x,y,z$ be 3 different real numbers not equal to $0$ that satisfiying $x^2-xy=y^2-yz=z^2-zx$. Find all the values of $\frac{x}{z}+\frac{y}{x}+\frac{z}{y}$ and $(x+y+z)^3+9xyz$.

2014 Harvard-MIT Mathematics Tournament, 28

Let $f(n)$ and $g(n)$ be polynomials of degree $2014$ such that $f(n)+(-1)^ng(n)=2^n$ for $n=1,2,\ldots,4030$. Find the coefficient of $x^{2014}$ in $g(x)$.

2011 Today's Calculation Of Integral, 699

Find the volume of the part bounded by $z=x+y,\ z=x^2+y^2$ in the $xyz$ space.