Found problems: 15925
LMT Guts Rounds, 2023 F
[u]Part 6 [/u]
[b]p16.[/b] Le[b][/b]t $p(x)$ and $q(x)$ be polynomials with integer coefficients satisfying $p(1) = q(1)$. Find the greatest integer $n$ such that $\frac{p(2023)-q(2023)}{n}$ is an integer no matter what $p(x)$ and $q(x)$ are.
[b]p17.[/b] Find all ordered pairs of integers $(m,n)$ that satisfy $n^3 +m^3 +231 = n^2m^2 +nm.$
[b]p18.[/b] Ben rolls the frustum-shaped piece of candy (shown below) in such a way that the lateral area is always in contact with the table. He rolls the candy until it returns to its original position and orientation. Given that $AB = 4$ and $BD =CD = 3$, find the length of the path traced by $A$.
[u]Part 7 [/u]
[b]p19.[/b] In their science class, Adam, Chris, Eddie and Sam are independently and randomly assigned an integer grade between $70$ and $79$ inclusive. Given that they each have a distinct grade, what is the expected value of the maximum grade among their four grades?
[b]p20.[/b] Let $ABCD$ be a regular tetrahedron with side length $2$. Let point $E$ be the foot of the perpendicular
from $D$ to the plane containing $\vartriangle ABC$. There exist two distinct spheres $\omega_1$ and $\omega_2$, centered at points $O_1$ and $O_2$ respectively, such that both $O_1$ and $O_2$ lie on $\overrightarrow{DE}$ and both spheres are tangent to all four of the planes $ABC$, $BCD$, $CDA$, and $DAB$. Find the sum of the volumes of $\omega_1$ and $\omega_2$.
[b]p21.[/b] Evaluate
$$\sum^{\infty}_{i=0}\sum^{\infty}_{j=0}\sum^{\infty}_{k=0} \frac{1}{(i + j +k +1)2^{i+j+k+1}}.$$
[u]Part 8 [/u]
[b]p22.[/b] In $\vartriangle ABC$, let $I_A$, $I_B$ , and $I_C$ denote the $A$, $B$, and $C$-excenters, respectively. Given that $AB = 15$, $BC = 14$ and $C A = 13$, find $\frac{[I_A I_B I_C ]}{[ABC]}$ .
[b]p23.[/b] The polynomial $x +2x^2 +3x^3 +4x^4 +5x^5 +6x^6 +5x^7 +4x^8 +3x^9 +2x^{10} +x^{11}$ has distinct complex roots $z_1, z_2, ..., z_n$. Find $$\sum^n_{k=1} |R(z^2n))|+|I(z^2n)|,$$ where $R(z)$ and $I(z)$ indicate the real and imaginary parts of $z$, respectively. Express your answer in simplest radical form.
[b]p24.[/b] Given that $\sin 33^o +2\sin 161^o \cdot \sin 38^o = \sin n^o$ , compute the least positive integer value of $n$.
[u]Part 9[/u]
[b]p25.[/b] Submit a prime between $2$ and $2023$, inclusive. If you don’t, or if you submit the same number as another team’s submission, you will receive $0$ points. Otherwise, your score will be $\min \left(30, \lfloor 4 \cdot ln(x) \rfloor \right)$, where $x$ is the positive difference between your submission and the closest valid submission made by another team.
[b]p26.[/b] Sam, Derek, Jacob, andMuztaba are eating a very large pizza with $2023$ slices. Due to dietary preferences, Sam will only eat an even number of slices, Derek will only eat a multiple of $3$ slices, Jacob will only eat a multiple of $5$ slices, andMuztaba will only eat a multiple of $7$ slices. How many ways are there for Sam, Derek, Jacob, andMuztaba to eat the pizza, given that all slices are identical and order of slices eaten is irrelevant? If your answer is $A$ and the correct answer is $C$, the number of points you receive will be: irrelevant? If your answer is $A$ and the correct answer is $C$, the number of points you receive will be:
$$\max \left( 0, \left\lfloor 30 \left( 1-2\sqrt{\frac{|A-C|}{C}}\right)\right\rfloor \right)$$
[b]p27.[/b] Let $ \Omega_(k)$ denote the number of perfect square divisors of $k$. Compute $$\sum^{10000}_{k=1} \Omega_(k).$$
If your answer is $A$ and the correct answer is $C$, the number of points you recieve will be
$$\max \left( 0, \left\lfloor 30 \left( 1-4\sqrt{\frac{|A-C|}{C}}\right)\right\rfloor \right)$$
PS. You should use hide for answers. Rounds 1-5 have been posted [url=https://artofproblemsolving.com/community/c3h3267911p30056982]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2018 Junior Balkan Team Selection Tests - Romania, 1
Determine the positive integers $n \ge 3$ such that, for every integer $m \ge 0$, there exist integers $a_1, a_2,..., a_n$ such that $a_1 + a_2 +...+ a_n = 0$ and $a_1a_2 + a_2a_3 + ...+a_{n-1}a_n + a_na_1 = -m$
Alexandru Mihalcu
1962 AMC 12/AHSME, 9
When $ x^9\minus{}x$ is factored as completely as possible into polynomials and monomials with integral coefficients, the number of factors is:
$ \textbf{(A)}\ \text{more than 5} \qquad
\textbf{(B)}\ 5 \qquad
\textbf{(C)}\ 4 \qquad
\textbf{(D)}\ 3 \qquad
\textbf{(E)}\ 2$
2011 AIME Problems, 9
Suppose $x$ is in the interval $[0,\pi/2]$ and $\log_{24\sin{x}}(24\cos{x})=\frac{3}{2}$.
Find $24\cot^2{x}$.
1955 AMC 12/AHSME, 25
One of the factors of $ x^4\plus{}2x^2\plus{}9$ is:
$ \textbf{(A)}\ x^2\plus{}3 \qquad
\textbf{(B)}\ x\plus{}1 \qquad
\textbf{(C)}\ x^2\minus{}3 \qquad
\textbf{(D)}\ x^2\minus{}2x\minus{}3 \qquad
\textbf{(E)}\ \text{none of these}$
2021 ABMC., Speed
[i]25 problems for 30 minutes[/i]
[b]p1.[/b] You and nine friends spend $4000$ dollars on tickets to attend the new Harry Styles concert. Unfortunately, six friends cancel last minute due to the u. You and your remaining friends still attend the concert and split the original cost of $4000$ dollars equally. What percent of the total cost does each remaining individual have to pay?
[b]p2.[/b] Find the number distinct $4$ digit numbers that can be formed by arranging the digits of $2021$.
[b]p3.[/b] On a plane, Darnay draws a triangle and a rectangle such that each side of the triangle intersects each side of the rectangle at no more than one point. What is the largest possible number of points of intersection of the two shapes?
[b]p4.[/b] Joy is thinking of a two-digit number. Her hint is that her number is the sum of two $2$-digit perfect squares $x_1$ and $x_2$ such that exactly one of $x_i - 1$ and $x_i + 1$ is prime for each $i = 1, 2$. What is Joy's number?
[b]p5.[/b] At the North Pole, ice tends to grow in parallelogram structures of area $60$. On the other hand, at the South Pole, ice grows in right triangular structures, in which each triangular and parallelogram structure have the same area. If every ice triangle $ABC$ has legs $\overline{AB}$ and $\overline{AC}$ that are integer lengths, how many distinct possible lengths are there for the hypotenuse $\overline{BC}$?
[b]p6.[/b] Carlsen has some squares and equilateral triangles, all of side length $1$. When he adds up the interior angles of all shapes, he gets $1800^o$. When he adds up the perimeters of all shapes, he gets $24$. How many squares does he have?
[b]p7.[/b] Vijay wants to hide his gold bars by melting and mixing them into a water bottle. He adds $100$ grams of liquid gold to $100$ grams of water. His liquefied gold bars have a density of $20$ g/ml and water has a density of $1$ g/ml. Given that the density of the mixture in g/mL can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute the sum $m + n$. (Note: density is mass divided by volume, gram (g) is unit of mass and ml is unit of volume. Further, assume the volume of the mixture is the sum of the volumes of the components.)
[b]p8.[/b] Julius Caesar has epilepsy. Specifically, if he sees $3$ or more flashes of light within a $0.1$ second time frame, he will have a seizure. His enemy Brutus has imprisoned him in a room with $4$ screens, which flash exactly every $4$, $5$, $6$, and $7$ seconds, respectively. The screens all flash at once, and $105$ seconds later, Caesar opens his eyes. How many seconds after he opened his eyes will Caesar first get a seizure?
[b]p9.[/b] Angela has a large collection of glass statues. One day, she was bored and decided to use some of her statues to create an entirely new one. She melted a sphere with radius $12$ and a cone with height of 18 and base radius of $2$. If Angela wishes to create a new cone with a base radius $2$, what would the the height of the newly created cone be?
[b]p10.[/b] Find the smallest positive integer $N$ satisfying these properties:
(a) No perfect square besides $1$ divides $N$.
(b) $N$ has exactly $16$ positive integer factors.
[b]p11.[/b] The probability of a basketball player making a free throw is $\frac15$. The probability that she gets exactly $2$ out of $4$ free throws in her next game can be expressed as $\frac{m}{n}$ for relatively prime positive integers m and n. Find $m + n$.
[b]p12.[/b] A new donut shop has $1000$ boxes of donuts and $1000$ customers arriving. The boxes are numbered $1$ to $1000$. Initially, all boxes are lined up by increasing numbering and closed. On the first day of opening, the first customer enters the shop and opens all the boxes for taste testing. On the second day of opening, the second customer enters and closes every box with an even number. The third customer then "reverses" (if closed, they open it and if open, they close it) every box numbered with a multiple of three, and so on, until all $1000$ customers get kicked out for having entered the shop and reversing their set of boxes. What is the number on the sixth box that is left open?
[b]p13.[/b] For an assignment in his math class, Michael must stare at an analog clock for a period of $7$ hours. He must record the times at which the minute hand and hour hand form an angle of exactly $90^o$, and he will receive $1$ point for every time he records correctly. What is the maximum number of points Michael can earn on his assignment?
[b]p14.[/b] The graphs of $y = x^3 +5x^2 +4x-3$ and $y = -\frac15 x+1$ intersect at three points in the Cartesian plane. Find the sum of the $y$-coordinates of these three points.
[b]p15.[/b] In the quarterfinals of a single elimination countdown competition, the $8$ competitors are all of equal skill. When any $2$ of them compete, there is exactly a $50\%$ chance of either one winning. If the initial bracket is randomized, the probability that two of the competitors, Daniel and Anish, face off in one of the rounds can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p$, $q$. Find $p + q$.
[b]p16.[/b] How many positive integers less than or equal to $1000$ are not divisible by any of the numbers $2$, $3$, $5$ and $11$?
[b]p17.[/b] A strictly increasing geometric sequence of positive integers $a_1, a_2, a_3,...$ satisfies the following properties:
(a) Each term leaves a common remainder when divided by $7$
(b) The first term is an integer from $1$ to $6$
(c) The common ratio is an perfect square
Let $N$ be the smallest possible value of $\frac{a_{2021}}{a_1}$. Find the remainder when $N$ is divided by $100$.
[b]p18.[/b] Suppose $p(x) = x^3 - 11x^2 + 36x - 36$ has roots $r, s,t$. Find %\frac{r^2 + s^2}{t}+\frac{s^2 + t^2}{r}+\frac{t^2 + r^2}{s}%.
[b]p19.[/b] Let $a, b \le 2021$ be positive integers. Given that $ab^2$ and $a^2b$ are both perfect squares, let $G = gcd(a, b)$. Find the sum of all possible values of $G$.
[b]p20.[/b] Jessica rolls six fair standard six-sided dice at the same time. Given that she rolled at least four $2$'s and exactly one $3$, the probability that all six dice display prime numbers can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. What is $m + n$?
[b]p21.[/b] Let $a, b, c$ be numbers such $a + b + c$ is real and the following equations hold:
$$a^3 + b^3 + c^3 = 25$$
$$\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}= 1$$
$$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{25}{9}$$
The value of $a + b + c$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m$, $n$. Find $m + n$.
[b]p22.[/b] Let $\omega$ be a circle and $P$ be a point outside $\omega$. Let line $\ell$ pass through $P$ and intersect $\omega$ at points $A,B$ and with $PA < PB$ and let $m$ be another line passing through $P$ intersecting $\omega$ at points $C,D$ with $PC < PD$. Let X be the intersection of $AD$ and $BC$. Given that $\frac{PC}{CD}=\frac23$, $\frac{PC}{PA}=\frac45$, and $\frac{[ABC]}{[ACD]}=\frac79$,the value of $\frac{[BXD]}{[BXA]}$ can be expressed as $\frac{m}{n}$ for relatively prime positive integers $m, n$: Find $m + n$.
[b]p23.[/b] Define the operation $a \circ b =\frac{a^2 + 2ab + a - 12}{b}$. Given that $1 \circ (2 \circ (3 \circ (... 2019 \circ (2020 \circ 2021)))...)$ can be expressed as $-\frac{a}{b}$ for some relatively prime positive integers $a,b$, compute $a + b$.
[b]p24.[/b] Find the largest integer $n \le 2021$ for which $5^{n-3} | (n!)^4$
[b]p25.[/b] On the Cartesian plane, a line $\ell$ intersects a parabola with a vertical axis of symmetry at $(0, 5)$ and $(4, 4)$. The focus $F$ of the parabola lies below $\ell$, and the distance from $F$ to $\ell$ is $\frac{16}{\sqrt{17}}$. Let the vertex of the parabola be $(x, y)$. The sum of all possible values of $y$ can be expressed as $\frac{p}{q}$ for relatively prime positive integers $p, q$. Find $p + q$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Korea Junior Math Olympiad, 7
positive integers $a_1, a_2, . . . , a_9$ satisfying $a_1+a_2+ . . . +a_9 =90$
find maximum of $$\frac{1^{a_1} \cdot 2^{a_2} \cdot . . . \cdot 9^{a_9}}{a_1! \cdot a_2! \cdot . . . \cdot a_9!}$$
[hide=mention]
I was really shocked because there are no inequality problems at KJMO
and the test difficulty even more lower...[/hide]
2025 ISI Entrance UGB, 4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the [i]period[/i] of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
2019 JBMO Shortlist, A5
Let $a, b, c, d$ be positive real numbers such that $abcd = 1$. Prove the inequality
$\frac{1}{a^3 + b + c + d} +\frac{1}{a + b^3 + c + d}+\frac{1}{a + b + c^3 + d} +\frac{1}{a + b + c + d^3} \leq \frac{a+b+c+d}{4}$
[i]Proposed by Romania[/i]
2022 CMWMC, R8
[u]Set 8[/u]
[b]p22.[/b] For monic quadratic polynomials $P = x^2 + ax + b$ and $Q = x^2 + cx + d$, where $1 \le a, b, c, d \le 10$ are integers, we say that $P$ and $Q$ are friends if there exists an integer $1 \le n \le 10$ such that $P(n) = Q(n)$. Find the total number of ordered pairs $(P, Q)$ of such quadratic polynomials that are friends.
[b]p23.[/b] A three-dimensional solid has six vertices and eight faces. Two of these faces are parallel equilateral triangles with side length $1$, $\vartriangle A_1A_2A_3$ and $\vartriangle B_1B_2B_3$. The other six faces are isosceles right triangles — $\vartriangle A_1B_2A_3$, $\vartriangle A_2B_3A_1$, $\vartriangle A_3B_1A_2$, $\vartriangle B_1A_2B_3$, $\vartriangle B_2A_3B_1$, $\vartriangle B_3A_1B_2$ — each with a right angle at the second vertex listed (so for instace $\vartriangle A_1B_2A_3$ has a right angle at $B_2$). Find the volume of this solid.
[b]p24.[/b] The digits $0, 1, 2, 3, 4, 5, 6, 7, 8, 9$ are each colored red, blue, or green. Find the number of colorings
such that any integer $ n \ge 2$ has that
(a) If $n$ is prime, then at least one digit of $n$ is not blue.
(b) If $n$ is composite, then at least one digit of $n$ is not green.
PS. You should use hide for answers.
1968 Putnam, A1
Prove
$ \ \ \ \frac{22}{7}\minus{}\pi \equal{}\int_0^1 \frac{x^4(1\minus{}x)^4}{1\plus{}x^2}\ dx$.
1986 Traian Lălescu, 2.1
Find the real values $ m\in\mathbb{R} $ such that all solutions of the equation
$$ 1=2mx(2x-1)(2x-2)(2x-3) $$
are real.
Mid-Michigan MO, Grades 7-9, 2007
[b]p1.[/b] The Evergreen School booked buses for a field trip. Altogether, $138$ people went to West Lake, while $115$ people went to East Lake. The buses all had the same number of seats and every bus has more than one seat. All seats were occupied and everybody had a seat. How many seats were on each bus?
[b]p2.[/b] In New Scotland there are three kinds of coins: $1$ cent, $6$ cent, and $36$ cent coins. Josh has $99$ of the $36$-cent coins (and no other coins). He is allowed to exchange a $36$ cent coin for $6$ coins of $6$ cents, and to exchange a $6$ cent coin for $6$ coins of $1$ cent. Is it possible that after several exchanges Josh will have $500$ coins?
[b]p3.[/b] Find all solutions $a, b, c, d, e, f, g, h$ if these letters represent distinct digits and the following multiplication is correct:
$\begin{tabular}{ccccc}
& & a & b & c \\
+ & & & d & e \\
\hline
& f & a & g & c \\
x & b & b & h & \\
\hline
f & f & e & g & c \\
\end{tabular}$
[b]p4.[/b] Is it possible to find a rectangle of perimeter $10$ m and cut it in rectangles (as many as you want) so that the sum of the perimeters is $500$ m?
[b]p5.[/b] The picture shows a maze with chambers (shown as circles) and passageways (shown as segments). A cat located in chamber $C$ tries to catch a mouse that was originally in the chamber $M$. The cat makes the first move, moving from chamber $C$ to one of the neighboring chambers. Then the mouse moves, then the cat, and so forth. At each step, the cat and the mouse can move to any neighboring chamber or not move at all. The cat catches the mouse by moving into the chamber currently occupied by the mouse. Can the cat get the mouse?
[img]https://cdn.artofproblemsolving.com/attachments/9/9/25f61e1499ff1cfeea591cb436d33eb2cdd682.png[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2004 USAMTS Problems, 5
Two circles of equal radius can tightly fit inside right triangle $ABC$, which has $AB=13$, $BC=12$, and $CA=5$, in the three positions illustrated below. Determine the radii of the circles in each case.
[asy]
size(400); defaultpen(linewidth(0.7)+fontsize(12)); picture p = new picture; pair s1 = (20,0), s2 = (40,0); real r1 = 1.5, r2 = 10/9, r3 = 26/7; pair A=(12,5), B=(0,0), C=(12,0);
draw(p,A--B--C--cycle); label(p,"$B$",B,SW); label(p,"$A$",A,NE); label(p,"$C$",C,SE);
add(p); add(shift(s1)*p); add(shift(s2)*p);
draw(circle(C+(-r1,r1),r1)); draw(circle(C+(-3*r1,r1),r1));
draw(circle(s1+C+(-r2,r2),r2)); draw(circle(s1+C+(-r2,3*r2),r2));
pair D=s2+156/17*(A-B)/abs(A-B), E=s2+(169/17,0), F=extension(D,E,s2+A,s2+C);
draw(incircle(s2+B,D,E)); draw(incircle(s2+A,D,F));
label("Case (i)",(6,-3)); label("Case (ii)",s1+(6,-3)); label("Case (iii)",s2+(6,-3));[/asy]
2022 3rd Memorial "Aleksandar Blazhevski-Cane", P2
Given an integer $n\geq2$, let $x_1<x_2<\cdots<x_n$ and $y_1<y_2<\cdots<y_n$ be positive reals. Prove that for every value $C\in (-2,2)$ (by taking $y_{n+1}=y_1$) it holds that
$\hspace{122px}\sum_{i=1}^{n}\sqrt{x_i^2+Cx_iy_i+y_i^2}<\sum_{i=1}^{n}\sqrt{x_i^2+Cx_iy_{i+1}+y_{i+1}^2}$.
[i]Proposed by Mirko Petrusevski[/i]
2024 Chile TST Ibero., 2
A collection of regular polygons with sides of equal length is said to "fit" if, when arranged around a common vertex, they exactly complete the surrounding area of the point on the plane. For example, a square fits with two octagons. Determine all possible collections of regular polygons that fit.
2007 South East Mathematical Olympiad, 1
Determine the number of real number $a$, such that for every $a$, equation $x^3=ax+a+1$ has a root $x_0$ satisfying following conditions:
(a) $x_0$ is an even integer;
(b) $|x_0|<1000$.
2014 USA TSTST, 3
Find all polynomials $P(x)$ with real coefficients that satisfy \[P(x\sqrt{2})=P(x+\sqrt{1-x^2})\]for all real $x$ with $|x|\le 1$.
Math Hour Olympiad, Grades 8-10, 2017
[u]Round 1[/u]
[b]p1. [/b]The Queen of Bees invented a new language for her hive. The alphabet has only $6$ letters: A, C, E, N, R, T; however, the alphabetic order is different than in English. A word is any sequence of $6$ different letters. In the dictionary for this language, the word TRANCE immediately follows NECTAR. What is the last word in the dictionary?
[b]p2.[/b] Is it possible to solve the equation $\frac{1}{x}= \frac{1}{y} +\frac{1}{z}$ with $x,y,z$ integers (positive or negative) such that one of the numbers $x,y,z$ has one digit, another has two digits, and the remaining one has three digits?
[b]p3.[/b] The $10,000$ dots in a $100\times 100$ square grid are all colored blue. Rekha can paint some of them red, but there must always be a blue dot on the line segment between any two red dots. What is the largest number of dots she can color red? The picture shows a possible coloring for a $5\times 7$ grid.
[img]https://cdn.artofproblemsolving.com/attachments/0/6/795f5ab879938ed2a4c8844092b873fb8589f8.jpg[/img]
[b]p4.[/b] Six flies rest on a table. You have a swatter with a checkerboard pattern, much larger than the table. Show that there is always a way to position and orient the swatter to kill at least five of the flies. Each fly is much smaller than a swatter square and is killed if any portion of a black square hits any part of the fly.
[b]p5.[/b] Maryam writes all the numbers $1-81$ in the cells of a $9\times 9$ table. Tian calculates the product of the numbers in each of the nine rows, and Olga calculates the product of the numbers in every column. Could Tian's and Olga's lists of nine products be identical?
[u]Round 2[/u]
[b]p6.[/b] A set of points in the plane is epic if, for every way of coloring the points red or blue, it is possible to draw two lines such that each blue point is on a line, but none of the red points are. The figure shows a particular set of $4$ points and demonstrates that it is epic. What is the maximum possible size of an epic set?
[img]https://cdn.artofproblemsolving.com/attachments/e/f/44fd1679c520bdc55c78603190409222d0b721.jpg[/img]
[b]p7.[/b] Froggy Chess is a game played on a pond with lily pads. First Judit places a frog on a pad of her choice, then Magnus places a frog on a different pad of his choice. After that, they alternate turns, with Judit moving first. Each player, on his or her turn, selects either of the two frogs and another lily pad where that frog must jump. The jump must reduce the distance between the frogs (all distances between the lily pads are different), but both frogs cannot end up on the same lily pad. Whoever cannot make a move loses. The picture below shows the jumps permitted in a particular situation.
Who wins the game if there are $2017$ lily pads?
[img]https://cdn.artofproblemsolving.com/attachments/a/9/1a26e046a2a614a663f9d317363aac61654684.jpg[/img]
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2006 Petru Moroșan-Trident, 1
Let be four distinct complex numbers $ a,b,c,d $ chosen such that
$$ |a|=|b|=|c|=|d|=|b-c|=\frac{|c-d|}{2}=1, $$
and
$$ \min_{\lambda\in\mathbb{C}} |a-\lambda d -(1-\lambda )c| =\min_{\lambda\in\mathbb{C}} |b-\lambda d -(1-\lambda )c| . $$
Calculate $ |a-c| $ and $ |a-d|. $
[i]Carmen Botea[/i]
MathLinks Contest 2nd, 6.1
Determine the parity of the positive integer $N$, where $$N = \lfloor \frac{2002!}{2001 \cdot2003} \rfloor.$$
EMCC Guts Rounds, 2014
[u]Round 5[/u]
[b]p13.[/b] Five different schools are competing in a tournament where each pair of teams plays at most once. Four pairs of teams are randomly selected and play against each other. After these four matches, what is the probability that Chad's and Jordan's respective schools have played against each other, assuming that Chad and Jordan come from different schools?
[b]p14.[/b] A square of side length $1$ and a regular hexagon are both circumscribed by the same circle. What is the side length of the hexagon?
[b]p15.[/b] From the list of integers $1,2, 3,...,30$ Jordan can pick at least one pair of distinct numbers such that none of the $28$ other numbers are equal to the sum or the difference of this pair. Of all possible such pairs, Jordan chooses the pair with the least sum. Which two numbers does Jordan pick?
[u]Round 6[/u]
[b]p16.[/b] What is the sum of all two-digit integers with no digit greater than four whose squares also have no digit greater than four?
[b]p17.[/b] Chad marks off ten points on a circle. Then, Jordan draws five chords under the following constraints:
$\bullet$ Each of the ten points is on exactly one chord.
$\bullet$ No two chords intersect.
$\bullet$ There do not exist (potentially non-consecutive) points $A, B,C,D,E$, and $F$, in that order around the circle, for which $AB$, $CD$, and $EF$ are all drawn chords.
In how many ways can Jordan draw these chords?
[b]p18.[/b] Chad is thirsty. He has $109$ cubic centimeters of silicon and a 3D printer with which he can print a cup to drink water in. He wants a silicon cup whose exterior is cubical, with five square faces and an open top, that can hold exactly $234$ cubic centimeters of water when filled to the rim in a rectangular-box-shaped cavity. Using all of his silicon, he prints a such cup whose thickness is the same on the five faces. What is this thickness, in centimeters?
[u]Round 7[/u]
[b]p19.[/b] Jordan wants to create an equiangular octagon whose side lengths are exactly the first $8$ positive integers, so that each side has a different length. How many such octagons can Jordan create?
[b]p20.[/b] There are two positive integers on the blackboard. Chad computes the sum of these two numbers and tells it to Jordan. Jordan then calculates the sum of the greatest common divisor and the least common multiple of the two numbers, and discovers that her result is exactly $3$ times as large as the number Chad told her. What is the smallest possible sum that Chad could have said?
[b]p21.[/b] Chad uses yater to measure distances, and knows the conversion factor from yaters to meters precisely. When Jordan asks Chad to convert yaters into meters, Chad only gives Jordan the result rounded to the nearest integer meters. At Jordan's request, Chad converts $5$ yaters into $8$ meters and $7$ yaters into $12$ meters. Given this information, how many possible numbers of meters could Jordan receive from Chad when requesting to convert $2014$ yaters into meters?
[u]Round 8[/u]
[b]p22.[/b] Jordan places a rectangle inside a triangle with side lengths $13$, $14$, and $15$ so that the vertices of the rectangle all lie on sides of the triangle. What is the maximum possible area of Jordan's rectangle?
[b]p23.[/b] Hoping to join Chad and Jordan in the Exeter Space Station, there are $2014$ prospective astronauts of various nationalities. It is given that $1006$ of the astronaut applicants are American and that there are a total of $64$ countries represented among the applicants. The applicants are to group into $1007$ pairs with no pair consisting of two applicants of the same nationality. Over all possible distributions of nationalities, what is the maximum number of possible ways to make the $1007$ pairs of applicants? Express your answer in the form $a \cdot b!$, where $a$ and $b$ are positive integers and $a$ is not divisible by $b + 1$.
Note: The expression $k!$ denotes the product $k \cdot (k - 1) \cdot ... \cdot 2 \cdot 1$.
[b]p24.[/b] We say a polynomial $P$ in $x$ and $y$ is $n$-[i]good [/i] if $P(x, y) = 0$ for all integers $x$ and $y$, with $x \ne y$, between $1$ and $n$, inclusive. We also define the complexity of a polynomial to be the maximum sum of exponents of $x$ and $y$ across its terms with nonzero coeffcients. What is the minimal complexity of a nonzero $4$-good polynomial? In addition, give an example of a $4$-good polynomial attaining this minimal complexity.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2915803p26040550]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 Bogdan Stan, 3
Solve in $ \mathbb{R} $ the equation $ 4^{x^2-x}=\log_2 x+\sqrt{x-1} +14. $
[i]Marin Tolosi[/i]
1998 Romania Team Selection Test, 2
Find all positive integers $ k$ for which the following statement is true: If $ F(x)$ is a polynomial with integer coefficients satisfying the condition $ 0 \leq F(c) \leq k$ for each $ c\in \{0,1,\ldots,k \plus{} 1\}$, then $ F(0) \equal{} F(1) \equal{} \ldots \equal{} F(k \plus{} 1)$.
2020 Estonia Team Selection Test, 1
Let $a_1, a_2,...$ a sequence of real numbers.
For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$.
It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$.
Prove that the sequence $a_1, a_2,..$ is arithmetic