This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Contests, 1

Find all function $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for all $x,y\in\mathbb{R}$ the following equality holds \[ f(\left\lfloor x\right\rfloor y)=f(x)\left\lfloor f(y)\right\rfloor \] where $\left\lfloor a\right\rfloor $ is greatest integer not greater than $a.$ [i]Proposed by Pierre Bornsztein, France[/i]

1997 Polish MO Finals, 2

Find all real solutions to: \begin{eqnarray*} 3(x^2 + y^2 + z^2) &=& 1 \\ x^2y^2 + y^2z^2 + z^2x^2 &=& xyz(x + y + z)^3. \end{eqnarray*}

1986 Federal Competition For Advanced Students, P2, 3

Find all possible values of $ x_0$ and $ x_1$ such that the sequence defined by: $ x_{n\plus{}1}\equal{}\frac{x_{n\minus{}1} x_n}{3x_{n\minus{}1}\minus{}2x_n}$ for $ n \ge 1$ contains infinitely many natural numbers.

2022 CHMMC Winter (2022-23), 3

Tags: algebra
Let $a_1,a_2,...$ be a strictly increasing sequence of positive real numbers such that $a_1 = 1$,$a_2 = 4$, and that for every positive integer $k$, the subsequence $a_{4k-3}$,$a_{4k-2}$,$a_{4k-1}$,$a_{4k}$ is geometric and the subsequence $a_{4k-1}$,$a_{4k}$,$a_{4k+1}$,$a_{4k+2}$ is arithmetic. For each positive integer $k$, let rk be the common ratio of the geometric sequence $a_{4k-3}$,$a_{4k-2}$,$a_{4k-1}$,$a_{4k}$. Compute $$\sum_{k=1}^{\infty} (r_k -1)(r_{k+1} -1)$$

2021 Ukraine National Mathematical Olympiad, 2

Denote by $P^{(n)}$ the set of all polynomials of degree $n$ the coefficients of which is a permutation of the set of numbers $\{2^0, 2^1,..., 2^n\}$. Find all pairs of natural numbers $(k,d)$ for which there exists a $n$ such that for any polynomial $p \in P^{(n)}$, number $P(k)$ is divisible by the number $d$. (Oleksii Masalitin)

1998 Portugal MO, 4

What is the largest integer less than or equal to $$\frac{3^{31}+2^{31}}{3^{29}+2^{29}} \,\,\, ?$$

2012 National Olympiad First Round, 23

$a,b,c$ are distinct real roots of $x^3-3x+1=0$. $a^8+b^8+c^8$ is $ \textbf{(A)}\ 156 \qquad \textbf{(B)}\ 171 \qquad \textbf{(C)}\ 180 \qquad \textbf{(D)}\ 186 \qquad \textbf{(E)}\ 201$

1991 Arnold's Trivium, 95

Decompose the space of homogeneous polynomials of degree $5$ in $(x, y, z)$ into irreducible subspaces invariant with respect to the rotation group $SO(3)$.

2022 Kazakhstan National Olympiad, 5

For positive reals $a,b,c$ with $\sqrt{a}+\sqrt{b}+\sqrt{c}\ge 3$ prove that $$\frac{a^3}{a^2+b}+\frac{b^3}{b^2+c}+\frac{c^3}{c^2+a}\ge \frac{3}{2}$$

MMATHS Mathathon Rounds, 2018

[u]Round 1[/u] [b]p1.[/b] Elaine creates a sequence of positive integers $\{s_n\}$. She starts with $s_1 = 2018$. For $n \ge 2$, she sets $s_n =\frac12 s_{n-1}$ if $s_{n-1}$ is even and $s_n = s_{n-1} + 1$ if $s_{n-1}$ is odd. Find the smallest positive integer $n$ such that $s_n = 1$, or submit “$0$” as your answer if no such $n$ exists. [b]p2.[/b] Alice rolls a fair six-sided die with the numbers $1$ through $6$, and Bob rolls a fair eight-sided die with the numbers $1$ through $8$. Alice wins if her number divides Bob’s number, and Bob wins otherwise. What is the probability that Alice wins? [b]p3.[/b] Four circles each of radius $\frac14$ are centered at the points $\left( \pm \frac14, \pm \frac14 \right)$, and ther exists a fifth circle is externally tangent to these four circles. What is the radius of this fifth circle? [u]Round 2 [/u] [b]p4.[/b] If Anna rows at a constant speed, it takes her two hours to row her boat up the river (which flows at a constant rate) to Bob’s house and thirty minutes to row back home. How many minutes would it take Anna to row to Bob’s house if the river were to stop flowing? [b]p5.[/b] Let $a_1 = 2018$, and for $n \ge 2$ define $a_n = 2018^{a_{n-1}}$ . What is the ones digit of $a_{2018}$? [b]p6.[/b] We can write $(x + 35)^n =\sum_{i=0}^n c_ix^i$ for some positive integer $n$ and real numbers $c_i$. If $c_0 = c_2$, what is $n$? [u]Round 3[/u] [b]p7.[/b] How many positive integers are factors of $12!$ but not of $(7!)^2$? [b]p8.[/b] How many ordered pairs $(f(x), g(x))$ of polynomials of degree at least $1$ with integer coefficients satisfy $f(x)g(x) = 50x^6 - 3200$? [b]p9.[/b] On a math test, Alice, Bob, and Carol are each equally likely to receive any integer score between $1$ and $10$ (inclusive). What is the probability that the average of their three scores is an integer? [u]Round 4[/u] [b]p10.[/b] Find the largest positive integer N such that $$(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)$$ is divisible by $N$ for all choices of positive integers $a > b > c > d > e$. [b]p11.[/b] Let $ABCDE$ be a square pyramid with $ABCD$ a square and E the apex of the pyramid. Each side length of $ABCDE$ is $6$. Let $ABCDD'C'B'A'$ be a cube, where $AA'$, $BB'$, $CC'$, $DD'$ are edges of the cube. Andy the ant is on the surface of $EABCDD'C'B'A'$ at the center of triangle $ABE$ (call this point $G$) and wants to crawl on the surface of the cube to $D'$. What is the length the shortest path from $G$ to $D'$? Write your answer in the form $\sqrt{a + b\sqrt3}$, where $a$ and $b$ are positive integers. [b]p12.[/b] A six-digit palindrome is a positive integer between $100, 000$ and $999, 999$ (inclusive) which is the same read forwards and backwards in base ten. How many composite six-digit palindromes are there? PS. You should use hide for answers. Rounds 5-7 have been posted [url=https://artofproblemsolving.com/community/c4h2784943p24473026]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 MMATHS, 7

Tags: algebra
Katherine makes Benj play a game called $50$ Cent. Benj starts with $\$0.50$, and every century thereafter has a $50\%$ chance of doubling his money and a $50\%$ chance of having his money reset to $\$0.50$. What is the expected value of the amount of money Benj will have, in dollars, after $50$ centuries?

1966 Spain Mathematical Olympiad, 4

Tags: algebra
You want to hang a weight $P$ so that it is $7$ m below a ceiling. To do this, it is suspended by means of a vertical cable attached to the midpoint $M$ of a chain hung by its ends from two points on the ceiling $A$ and $B$ distant from each other $4$ m. The price of the cable $PM$ is $p$ pta/m and that of the chain $AMB$ is $q$ pta/m. It is requested: a) Determine the lengths of the cable and the chain to obtain the lowest price cost of installation. b) Discuss the solution for the different values of the relation $p/q$ of both prices. (It is assumed that the weight is large enough to be considered rectile lines the chain segments $AM$ and $MB$).

2016 Postal Coaching, 4

Let $f$ be a polynomial with real coefficients and suppose $f$ has no nonnegative real root. Prove that there exists a polynomial $h$ with real coefficients such that the coefficients of $fh$ are nonnegative.

2022 Purple Comet Problems, 16

Tags: algebra
The sum of the solutions to the equation $$x^{\log_2 x} =\frac{64}{x}$$ can be written as$ \frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1988 IMO Shortlist, 8

Let $ u_1, u_2, \ldots, u_m$ be $ m$ vectors in the plane, each of length $ \leq 1,$ with zero sum. Show that one can arrange $ u_1, u_2, \ldots, u_m$ as a sequence $ v_1, v_2, \ldots, v_m$ such that each partial sum $ v_1, v_1 \plus{} v_2, v_1 \plus{} v_2 \plus{} v_3, \ldots, v_1, v_2, \ldots, v_m$ has length less than or equal to $ \sqrt {5}.$

1957 Moscow Mathematical Olympiad, 364

(a) Prove that the number of all digits in the sequence $1, 2, 3,... , 10^8$ is equal to the number of all zeros in the sequence $1, 2, 3, ... , 10^9$. (b) Prove that the number of all digits in the sequence $1, 2, 3, ... , 10^k$ is equal to the number of all zeros in the sequence $1, 2, 3, ... , 10^{k+1}$.

1983 Putnam, B6

Let $ k$ be a positive integer, let $ m\equal{}2^k\plus{}1$, and let $ r\neq 1$ be a complex root of $ z^m\minus{}1\equal{}0$. Prove that there exist polynomials $ P(z)$ and $ Q(z)$ with integer coefficients such that $ (P(r))^2\plus{}(Q(r))^2\equal{}\minus{}1$.

BIMO 2022, 1

Let $a, b, c,$ be nonnegative reals with $ a+b+c=3 $, find the largest positive real $ k $ so that for all $a,b,c,$ we have $$ a^2+b^2+c^2+k(abc-1)\ge 3 $$

1980 IMO Shortlist, 18

Given a sequence $\{a_n\}$ of real numbers such that $|a_{k+m} - a_k - a_m| \leq 1$ for all positive integers $k$ and $m$, prove that, for all positive integers $p$ and $q$, \[|\frac{a_p}{p} - \frac{a_q}{q}| < \frac{1}{p} + \frac{1}{q}.\]

1990 IMO Longlists, 93

Let $ {\mathbb Q}^ \plus{}$ be the set of positive rational numbers. Construct a function $ f : {\mathbb Q}^ \plus{} \rightarrow {\mathbb Q}^ \plus{}$ such that \[ f(xf(y)) \equal{} \frac {f(x)}{y} \] for all $ x$, $ y$ in $ {\mathbb Q}^ \plus{}$.

1991 AIME Problems, 6

Suppose $r$ is a real number for which \[ \left\lfloor r + \frac{19}{100} \right\rfloor + \left\lfloor r + \frac{20}{100} \right\rfloor + \left\lfloor r + \frac{21}{100} \right\rfloor + \cdots + \left\lfloor r + \frac{91}{100} \right\rfloor = 546. \] Find $\lfloor 100r \rfloor$. (For real $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$.)

2022 Irish Math Olympiad, 6

6. Suppose [i]a[/i], [i]b[/i], [i]c[/i] are real numbers such that [i]a[/i] + [i]b[/i] + [i]c[/i] = 1. Prove that \[a^3 + b^3 + c^3 + 3(1-a)(1-b)(1-c) = 1.\]

2024 Serbia National Math Olympiad, 5

Tags: algebra
Let $n \geq 3$ be a positive integer. Find all positive integers $k$, such that the function $f:\mathbb{R} \rightarrow \mathbb{R}$ defined by $$f(x)=\cos^k(x)+\cos^k(x+\frac{2\pi}{n})+\ldots +\cos^k(x+\frac{2(n-1)\pi}{n})$$ is constant.

1993 China Team Selection Test, 2

Tags: algebra
Let $S = \{(x,y) | x = 1, 2, \ldots, 1993, y = 1, 2, 3, 4\}$. If $T \subset S$ and there aren't any squares in $T.$ Find the maximum possible value of $|T|.$ The squares in T use points in S as vertices.

2001 India IMO Training Camp, 2

Let $Q(x)$ be a cubic polynomial with integer coefficients. Suppose that a prime $p$ divides $Q(x_j)$ for $j = 1$ ,$2$ ,$3$ ,$4$ , where $x_1 , x_2 , x_3 , x_4$ are distinct integers from the set $\{0,1,\cdots, p-1\}$. Prove that $p$ divides all the coefficients of $Q(x)$.