This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 357

1997 USAMO, 6

Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies \[ a_i + a_j \leq a_{i+j} \leq a_i + a_j + 1 \] for all $i,j \geq 1$ with $i + j \leq 1997$. Show that there exists a real number $x$ such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\leq nx$) for all $1 \leq n \leq 1997$.

2024-IMOC, C1

On a $n \times n$ grid, each edge are written with $=$ or $\neq$. We need to filled every cells with color black or white. Find the largest constant $k$, such that for every $n>777771449$ and any layout of $=$ and $\neq$, we can always find a way to colored every cells, such that at least $k \cdot 2n(n-1)$ neighboring cells, there colors conform to the symbols on the edge. (Namely, two cells are filled with the same color if $=$ was written on their edge; two cells are filled with different colors if $\neq$ was written on their edge) [i]Proposed by chengbilly & sn6dh[/i]

MathLinks Contest 7th, 2.1

Let $ k$ be an integer, $ k \geq 2$, and let $ p_{1},\ p_{2},\ \ldots,\ p_{k}$ be positive reals with $ p_{1} \plus{} p_{2} \plus{} \ldots \plus{} p_{k} \equal{} 1$. Suppose we have a collection $ \left(A_{1,1},\ A_{1,2},\ \ldots,\ A_{1,k}\right)$, $ \left(A_{2,1},\ A_{2,2},\ \ldots,\ A_{2,k}\right)$, $ \ldots$, $ \left(A_{m,1},\ A_{1,2},\ \ldots,\ A_{m,k}\right)$ of $ k$-tuples of finite sets satisfying the following two properties: (i) for every $ i$ and every $ j \neq j^{\prime}$, $ A_{i,j}\cap A_{i,j^{\prime}} \equal{} \emptyset$, and (ii) for every $ i\neq i^{\prime}$ there exist $ j\neq j^{\prime}$ for which $ A_{i,j} \cap A_{i^{\prime},j^{\prime}}\neq\emptyset$. Prove that \[ \sum_{b \equal{} 1}^{m}{\prod_{a \equal{} 1}^{k}{p_{a}^{|A_{b,a}|}}} \leq 1. \]

2000 IMO, 3

Let $ n \geq 2$ be a positive integer and $ \lambda$ a positive real number. Initially there are $ n$ fleas on a horizontal line, not all at the same point. We define a move as choosing two fleas at some points $ A$ and $ B$, with $ A$ to the left of $ B$, and letting the flea from $ A$ jump over the flea from $ B$ to the point $ C$ so that $ \frac {BC}{AB} \equal{} \lambda$. Determine all values of $ \lambda$ such that, for any point $ M$ on the line and for any initial position of the $ n$ fleas, there exists a sequence of moves that will take them all to the position right of $ M$.

1999 Dutch Mathematical Olympiad, 5

Let $c$ be a nonnegative integer, and define $a_n = n^2 + c$ (for $n \geq 1)$. Define $d_n$ as the greatest common divisor of $a_n$ and $a_{n + 1}$. (a) Suppose that $c = 0$. Show that $d_n = 1,\ \forall n \geq 1$. (b) Suppose that $c = 1$. Show that $d_n \in \{1,5\},\ \forall n \geq 1$. (c) Show that $d_n \leq 4c + 1,\ \forall n \geq 1$.

2020 IMO Shortlist, A5

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

1988 AIME Problems, 8

The function $f$, defined on the set of ordered pairs of positive integers, satisfies the following properties: \begin{eqnarray*} f(x,x) &=& x, \\ f(x,y) &=& f(y,x), \quad \text{and} \\ (x + y) f(x,y) &=& yf(x,x + y). \end{eqnarray*} Calculate $f(14,52)$.

2013 IMO Shortlist, C3

A crazy physicist discovered a new kind of particle wich he called an imon, after some of them mysteriously appeared in his lab. Some pairs of imons in the lab can be entangled, and each imon can participate in many entanglement relations. The physicist has found a way to perform the following two kinds of operations with these particles, one operation at a time. (i) If some imon is entangled with an odd number of other imons in the lab, then the physicist can destroy it. (ii) At any moment, he may double the whole family of imons in the lab by creating a copy $I'$ of each imon $I$. During this procedure, the two copies $I'$ and $J'$ become entangled if and only if the original imons $I$ and $J$ are entangled, and each copy $I'$ becomes entangled with its original imon $I$; no other entanglements occur or disappear at this moment. Prove that the physicist may apply a sequence of such operations resulting in a family of imons, no two of which are entangled.

2008 APMO, 2

Students in a class form groups each of which contains exactly three members such that any two distinct groups have at most one member in common. Prove that, when the class size is $ 46$, there is a set of $ 10$ students in which no group is properly contained.

2013 Today's Calculation Of Integral, 890

A function $f_n(x)\ (n=1,\ 2,\ \cdots)$ is defined by $f_1(x)=x$ and \[f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t}dt\ (n=2,\ 3,\ \cdots)\]. Find $f_n(x)$.

1997 Vietnam National Olympiad, 1

Let $ k \equal{} \sqrt[3]{3}$. a, Find all polynomials $ p(x)$ with rationl coefficients whose degree are as least as possible such that $ p(k \plus{} k^2) \equal{} 3 \plus{} k$. b, Does there exist a polynomial $ p(x)$ with integer coefficients satisfying $ p(k \plus{} k^2) \equal{} 3 \plus{} k$

2012 Benelux, 4

Yesterday, $n\ge 4$ people sat around a round table. Each participant remembers only who his two neighbours were, but not necessarily which one sat on his left and which one sat on his right. Today, you would like the same people to sit around the same round table so that each participant has the same two neighbours as yesterday (it is possible that yesterday’s left-hand side neighbour is today’s right-hand side neighbour). You are allowed to query some of the participants: if anyone is asked, he will answer by pointing at his two neighbours from yesterday. a) Determine the minimal number $f(n)$ of participants you have to query in order to be certain to succeed, if later questions must not depend on the outcome of the previous questions. That is, you have to choose in advance the list of people you are going to query, before effectively asking any question. b) Determine the minimal number $g(n)$ of participants you have to query in order to be certain to succeed, if later questions may depend on the outcome of previous questions. That is, you can wait until you get the first answer to choose whom to ask the second question, and so on.

1994 Brazil National Olympiad, 3

We are given n objects of identical appearance, but different mass, and a balance which can be used to compare any two objects (but only one object can be placed in each pan at a time). How many times must we use the balance to find the heaviest object and the lightest object?

2014 Purple Comet Problems, 29

Consider the sequences of six positive integers $a_1,a_2,a_3,a_4,a_5,a_6$ with the properties that $a_1=1$, and if for some $j > 1$, $a_j = m > 1$, then $m-1$ appears in the sequence $a_1,a_2,\dots,a_{j-1}$. Such sequences include $1,1,2,1,3,2$ and $1,2,3,1,4,1$ but not $1,2,2,4,3,2$. How many such sequences of six positive integers are there?

2008 May Olympiad, 1

In a blackboard, it's written the following expression $ 1-2-2^2-2^3-2^4-2^5-2^6-2^7-2^8-2^9-2^{10}$ We put parenthesis by different ways and then we calculate the result. For example: $ 1-2-\left(2^2-2^3\right)-2^4-\left(2^5-2^6-2^7\right)-2^8-\left( 2^9-2^{10}\right)= 403$ and $ 1-\left(2-2^2 \left(-2^3-2^4 \right)-\left(2^5-2^6-2^7\right)\right)- \left(2^8- 2^9 \right)-2^{10}= -933$ How many different results can we obtain?

2021 Indonesia MO, 6

There are $n$ natural numbers written on the board. Every move, we could erase $a,b$ and change it to $\gcd(a,b)$ and $\text{lcm}(a,b) - \gcd(a,b)$. Prove that in finite number of moves, all numbers in the board could be made to be equal.

2011 Brazil National Olympiad, 6

Let $a_{1}, a_{2}, a_{3}, ... a_{2011}$ be nonnegative reals with sum $\frac{2011}{2}$, prove : $|\prod_{cyc} (a_{n} - a_{n+1})| = |(a_{1} - a_{2})(a_{2} - a_{3})...(a_{2011}-a_{1})| \le \frac{3 \sqrt3}{16}.$

2012 Regional Olympiad of Mexico Center Zone, 6

A board of $2n$ x $2n$ is colored chess style, a movement is the changing of colors of a $2$ x $2$ square. For what integers $n$ is possible to complete the board with one color using a finite number of movements?

2005 All-Russian Olympiad, 2

In a $2\times n$ array we have positive reals s.t. the sum of the numbers in each of the $n$ columns is $1$. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}4$.

1986 IMO, 3

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

2014 AIME Problems, 3

Find the number of rational numbers $r$, $0<r<1$, such that when $r$ is written as a fraction in lowest terms, the numerator and denominator have a sum of $1000$.

2024 India Iran Friendly Math Competition, 5

Let $n \geq k$ be positive integers and let $a_1, \dots, a_n$ be a non-increasing list of positive real numbers. Prove that there exists $k$ sets $B_1, \dots, B_k$ which partition the set $\{1, 2, \dots, n\}$ such that $$\min_{1 \le j \le k} \left(\sum_{i \in B_j} a_i \right) \geq \min_{1 \le j \le k} \left(\frac{1}{2k+1-2j} \cdot \sum^n_{i=j} a_i\right).$$ [i]Proposed by Navid Safaei[/i]

2005 Korea National Olympiad, 1

For two positive integers a and b, which are relatively prime, find all integer that can be the great common divisor of $a+b$ and $\frac{a^{2005}+b^{2005}}{a+b}$.

1989 IMO Longlists, 64

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

2006 South East Mathematical Olympiad, 3

There is a standard deck of $52$ cards without jokers. The deck consists of four suits(diamond, club, heart, spade) which include thirteen cards in each. For each suit, all thirteen cards are ranked from “$2$” to “$A$” (i.e. $2, 3,\ldots , Q, K, A$). A pair of cards is called a “[i]straight flush[/i]” if these two cards belong to the same suit and their ranks are adjacent. Additionally, "$A$" and "$2$" are considered to be adjacent (i.e. "A" is also considered as "$1$"). For example, spade $A$ and spade $2$ form a “[i]straight flush[/i]”; diamond $10$ and diamond $Q$ are not a “[i]straight flush[/i]” pair. Determine how many ways of picking thirteen cards out of the deck such that all ranks are included but no “[i]straight flush[/i]” exists in them.