Found problems: 78
1979 Swedish Mathematical Competition, 4
$f(x)$ is continuous on the interval $[0, \pi]$ and satisfies
\[
\int\limits_0^\pi f(x)dx=0, \qquad \int\limits_0^\pi f(x)\cos x dx=0
\]
Show that $f(x)$ has at least two zeros in the interval $(0, \pi)$.
2018 Poland - Second Round, 6
Let $k$ be a positive integer and $a_1, a_2, ...$ be a sequence of terms from set $\{ 0, 1, ..., k \}$. Let
$b_n = \sqrt[n] {a_1^n + a_2^n + ... + a_n^n}$
for all positive integers $n$. Prove, that if in sequence $b_1, b_2, b_3, ...$ are infinitely many integers, then all terms of this series are integers.
2018 Kazakhstan National Olympiad, 4
Prove that for all reas $a,b,c,d\in(0,1)$ we have $$\left(ab-cd\right)\left(ac+bd\right)\left(ad-bc\right)+\min{\left(a,b,c,d\right)} < 1.$$
2020 Simon Marais Mathematics Competition, A3
Determine the set of real numbers $\alpha$ that can be expressed in the form \[\alpha=\sum_{n=0}^{\infty}\frac{x_{n+1}}{x_n^3}\]
where $x_0,x_1,x_2,\dots$ is an increasing sequence of real numbers with $x_0=1$.
1976 All Soviet Union Mathematical Olympiad, 234
Given a sphere of unit radius with the big circle (i.e of unit radius) that will be called "equator". We shall use the words "pole", "parallel","meridian" as self-explanatory.
a) Let $g(x)$, where $x$ is a point on the sphere, be the distance from this point to the equator plane. Prove that $g(x)$ has the property if $x_1, x_2, x_3$ are the ends of the pairwise orthogonal radiuses, then $$g(x_1)^2 + g(x_2)^2 + g(x_3)^2 = 1 \,\,\,\, (*)$$
Let function $f(x)$ be an arbitrary nonnegative function on a sphere that satisfies (*) property.
b) Let $x_1$ and $x_2$ points be on the same meridian between the north pole and equator, and $x_1$ is closer to the pole than $x_2$. Prove that $f(x_1) > f(x_2)$.
c) Let $y_1$ be closer to the pole than $y_2$. Prove that $f(y_1) > f(y_2)$.
d) Let $z_1$ and $z_2$ be on the same parallel. Prove that $f(z_1) = f(z_2)$.
e) Prove that for all $x , f(x) = g(x)$.
2015 IMAR Test, 4
(a) Show that, if $I \subset R$ is a closed bounded interval, and $f : I \to R$ is a non-constant monic polynomial function such that $max_{x\in I}|f(x)|< 2$, then there exists a non-constant monic polynomial function $g : I \to R$ such that $max_{x\in I} |g(x)| < 1$.
(b) Show that there exists a closed bounded interval $I \subset R$ such that $max_{x\in I}|f(x)| \ge 2$ for every non-constant monic polynomial function $f : I \to R$.
1995 Miklós Schweitzer, 8
Let P be a finite, partially ordered set with one largest element, which is the only upper bound of the set of minimal elements. Prove that any monotonic function $f : P^n\to P$ can be written in the form $g( x_1 , x_2 , ..., x_n , c_1 , ..., c_m )$, where $c_i\in P$ and g is a monotonic, idempotent function. (g is idempotent iff $g(x , x , ..., x) = x\,\forall x\in P$)
1986 Tournament Of Towns, (116) 4
The function $F$ , defined on the entire real line, satisfies the following relation (for all $x$ ) : $F(x +1 )F(x) + F(x + 1 ) + 1 = 0$ . Prove that $F$ is not continuous.
(A.I. Plotkin, Leningrad)
1970 Swedish Mathematical Competition, 4
Let $p(x) = (x- x_1)(x- x_2)(x- x_3)$, where $x_1, x_2$ and $x_3$ are real. Show that $p(x) p''(x) \le p'(x)^2$ for all $x$.
KoMaL A Problems 2023/2024, A. 883
Let $J\subsetneq I\subseteq \mathbb R$ be non-empty open intervals, and let $f_1, f_2,\ldots$ be real polynomials satisfying the following conditions:
[list]
[*] $f_i(x)\ge 0$ for all $i\ge 1$ and $x\in I$,
[*] $\sum\limits_{i=1}^\infty f_i(x)$ is finite for all $x\in I$,
[*] $\sum\limits_{i=1}^\infty f_i(x)=1$ for all $x\in J$.
[/list]
Do these conditions imply that $\sum\limits_{i=1}^\infty f_i(x)=1$ also for all $x\in I$?
[i]Proposed by András Imolay, Budapest[/i]
2025 VJIMC, 3
Let us call a sequence $(b_1, b_2, \ldots)$ of positive integers fast-growing if $b_{n+1} \geq b_n + 2$ for all $n \geq 1$. Also, for a sequence $a = (a(1), a(2), \ldots)$ of real numbers and a sequence $b = (b_1, b_2, \ldots)$ of positive integers, let us denote
\[
S(a, b) = \sum_{n=1}^{\infty} \left| a(b_n) + a(b_n + 1) + \cdots + a(b_{n+1} - 1) \right|.
\]
a) Do there exist two fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series
\[
\sum_{n=1}^{\infty} a(n), \quad S(a, b) \quad \text{and} \quad S(a, c)
\]
are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?
b) Do there exist three fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$, $d = (d_1, d_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series
\[
S(a, b), \quad S(a, c) \quad \text{and} \quad S(a, d)
\]
are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?
2017 Miklós Schweitzer, 9
Let $N$ be a normed linear space with a dense linear subspace $M$. Prove that if $L_1,\ldots,L_m$ are continuous linear functionals on $N$, then for all $x\in N$ there exists a sequence $(y_n)$ in $M$ converging to $x$ satisfying $L_j(y_n)=L_j(x)$ for all $j=1,\ldots,m$ and $n\in \mathbb{N}$.
KoMaL A Problems 2017/2018, A. 714
Consider $n \ge 2$ pairwise disjoint disks $D_1,D_2,\ldots,D_n$ on the Euclidean plane. For each $k=1,2,\ldots,n$, denote by $f_k$ the inversion with respect to the boundary circle of $D_k$. (Here, $f_k$ is defined at every point of the plane, except for the center of $D_k$.) How many fixed points can the transformation $f_n\circ f_{n-1}\circ\ldots\circ f_1$ have, if it is defined on the largest possible subset of the plane?
1978 All Soviet Union Mathematical Olympiad, 268
Consider a sequence $$x_n=(1+\sqrt2+\sqrt3)^n$$ Each member can be represented as $$x_n=q_n+r_n\sqrt2+s_n\sqrt3+t_n\sqrt6$$ where $q_n, r_n, s_n, t_n$ are integers. Find the limits of the fractions $r_n/q_n, s_n/q_n, t_n/q_n$.
1963 Swedish Mathematical Competition., 6
The real-valued function $f(x)$ is defined on the reals. It satisfies $|f(x)| \le A$, $|f''(x)| \le B$ for some positive $A, B$ (and all $x$). Show that $|f'(x)| \le C$, for some fixed$ C$, which depends only on $A$ and $B$. What is the smallest possible value of $C$?
VII Soros Olympiad 2000 - 01, 11.3
The function $F (x)$ is defined on $R$ and has a second derivative for each value of the variable. Prove that there is a point $x_0$ such that the product $ F(x_0) F''(x_0)$ is non-negative.
PS. In my [url=http://www.1543.su/olympiads/soros/20002001/1/1soros00.htm]source[/url], it is not clear if it means $ F(x_0) F''(x_0)$ or $ F(x_0) F'(x_0)$.
2016 District Olympiad, 4
Let $ I $ be an open real interval, and let be two functions $ f,g:I\longrightarrow\mathbb{R} $ satisfying the identity:
$$ x,y\in I\wedge x\neq y\implies\frac{f(x)-g(y)}{x-y} +|x-y|\ge 0. $$
[b]a)[/b] Prove that $ f,g $ are nondecreasing.
[b]b)[/b] Give a concrete example for $ f\neq g. $
1971 Spain Mathematical Olympiad, 5
Prove that whatever the complex number $z$ is, it is true that
$$(1 + z^{2^n})(1-z^{2^n})= 1- z^{2^{n+1}}.$$
Writing the equalities that result from giving $n$ the values $0, 1, 2, . . .$ and multiplying them, show that for $|z| < 1$ holds
$$\frac{1}{1-z}= \lim_{k\to \infty}(1 + z)(1 + z^2)(1 + z^{2^2})...(1 + z^{2^k}).$$
2024 District Olympiad, P2
Let $k\geqslant 2$ be an integer. Consider the sequence $(x_n)_{n\geqslant 1}$ defined by $x_1=a>0$ and $x_{n+1}=x_n+\lfloor k/x_n\rfloor$ for $n\geqslant 1.$ Prove that the sequence is convergent and determine its limit.
2019 Korea USCM, 7
For a real number $a$ and an integer $n(\geq 2)$, define
$$S_n (a) = n^a \sum_{k=1}^{n-1} \frac{1}{k^{2019} (n-k)^{2019}}$$
Find every value of $a$ s.t. sequence $\{S_n(a)\}_{n\geq 2}$ converges to a positive real.
2024 Bulgaria MO Regional Round, 12.2
Let $N$ be a positive integer. The sequence $x_1, x_2, \ldots$ of non-negative reals is defined by $$x_n^2=\sum_{i=1}^{n-1} \sqrt{x_ix_{n-i}}$$ for all positive integers $n>N$. Show that there exists a constant $c>0$, such that $x_n \leq \frac{n} {2}+c$ for all positive integers $n$.
2021 Alibaba Global Math Competition, 15
Let $(M,g)$ be an $n$-dimensional complete Riemannian manifold with $n \ge 2$. Suppose $M$ is connected and $\text{Ric} \ge (n-1)g$, where $\text{Ric}$ is the Ricci tensor of $(M,g)$. Denote by $\text{d}g$ the Riemannian measure of $(M,g)$ and by $d(x,y)$ the geodesic distance between $x$ and $y$. Prove that
\[\int_{M \times M} \cos d(x,y) \text{d}g(x)\text{d}g(y) \ge 0.\]
Moreover, equality holds if and only if $(M,g)$ is isometric to the unit round sphere $S^n$.
2021 Alibaba Global Math Competition, 9
Let $\varepsilon$ be positive constant and $u$ satisfies that
\[
\begin{cases} (\partial_t-\varepsilon\partial_x^2-\partial_y^2)u=0, & (t,x,y) \in \mathbb{R}_+ \times \mathbb{R} \times \mathbb{R}_+,\\ \partial_y u\vert_{y=0}=\partial_x h, &\\u\vert_{t=0}=0. & \end{cases}\]
Here $h(t,x)$ is a smooth Schwartz function. Define the operator $e^{a\langle D\rangle}$
\[\mathcal{F}_x(e^{a\langle D\rangle} f)(k)=e^{a\langle k\rangle} \mathcal{F}_x(f)(k), \quad \langle k\rangle=1+\vert k\vert,\]
where $\mathcal{F}_x$ stands for the Fourier transform in $x$. Show that
\[\int_0^T \|e^{(1-s)\langle D\rangle} u\|_{L_{x,y}^2}^2 ds \le C \int_0^T \|e^{(1-s)\langle D\rangle} h\|_{H_x^{\frac{1}{4}}}^2 ds\]
with constant $C$ independent of $\varepsilon, T$ and $h$.
1968 Vietnam National Olympiad, 1
Let $a$ and $b$ satisfy $a \ge b >0, a + b = 1$.
i) Prove that if $m$ and $n$ are positive integers with $m < n$, then $a^m - a^n \ge b^m- b^n > 0$.
ii) For each positive integer $n$, consider a quadratic function $f_n(x) = x^2 - b^nx- a^n$.
Show that $f(x)$ has two roots that are in between $-1$ and $1$.
1983 Putnam, A2
The shorthand of a clock has the length 3, the longhand has the length 4. Determine the distance between the endpoints of the hands at the time, where their distance increases the most.