This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

2002 Junior Balkan Team Selection Tests - Romania, 3

Let $ABC$ be an isosceles triangle such that $AB = AC$ and $\angle A = 20^o$. Let $M$ be the foot of the altitude from $C$ and let $N$ be a point on the side $AC$ such that $CN =\frac12 BC$. Determine the measure of the angle $AMN$.

2019 Azerbaijan IMO TST, 2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2022 Germany Team Selection Test, 2

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2021 Romanian Master of Mathematics Shortlist, G1

Let $ABCD$ be a parallelogram. A line through $C$ crosses the side $AB$ at an interior point $X$, and the line $AD$ at $Y$. The tangents of the circle $AXY$ at $X$ and $Y$, respectively, cross at $T$. Prove that the circumcircles of triangles $ABD$ and $TXY$ intersect at two points, one lying on the line $AT$ and the other one lying on the line $CT$.

Brazil L2 Finals (OBM) - geometry, 2005.6

The angle $B$ of a triangle $ABC$ is $120^o$. Let $M$ be a point on the side $AC$ and $K$ a point on the extension of the side $AB$, such that $BM$ is the internal bisector of the angle $\angle ABC$ and $CK$ is the external bisector corresponding to the angle $\angle ACB$ . The segment $MK$ intersects $BC$ at point $P$. Prove that $\angle APM = 30^o$.

2018 Yasinsky Geometry Olympiad, 4

Let $I_a$ be the point of the center of an ex-circle of the triangle $ABC$, which touches the side $BC$ . Let $W$ be the intersection point of the bisector of the angle $\angle A$ of the triangle $ABC$ with the circumcircle of the triangle $ABC$. Perpendicular from the point $W$ on the straight line $AB$, intersects the circumcircle of $ABC$ at the point $P$. Prove, that if the points $B, P, I_a$ lie on the same line, then the triangle $ABC$ is isosceles. (Mykola Moroz)

2019 Germany Team Selection Test, 2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2024 India National Olympiad, 1

In triangle $ABC$ with $CA=CB$, point $E$ lies on the circumcircle of $ABC$ such that $\angle ECB=90^{\circ}$. The line through $E$ parallel to $CB$ intersects $CA$ in $F$ and $AB$ in $G$. Prove that the center of the circumcircle of triangle $EGB$ lies on the circumcircle of triangle $ECF$. Proposed by Prithwijit De

2016 Postal Coaching, 1

Let $ABCD$ be a convex quadrilateral in which $$\angle BAC = 48^{\circ}, \angle CAD = 66^{\circ}, \angle CBD = \angle DBA.$$Prove that $\angle BDC = 24^{\circ}$.

May Olympiad L2 - geometry, 2009.2

Let $ABCD$ be a convex quadrilateral such that the triangle $ABD$ is equilateral and the triangle $BCD$ is isosceles, with $\angle C = 90^o$. If $E$ is the midpoint of the side $AD$, determine the measure of the angle $\angle CED$.

2006 Greece JBMO TST, 3

Find the angle $\angle A$ of a triangle $ABC$, when we know it's altitudes $BD$ and $CE$ intersect in an interior point $H$ of the triangle and $BH=2HD$ and $CH=HE$.

2021 IMO Shortlist, G4

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

2022 Malaysia IMONST 2, 4

Given a pentagon $ABCDE$ with all its interior angles less than $180^\circ$. Prove that if $\angle ABC = \angle ADE$ and $\angle ADB = \angle AEC$, then $\angle BAC = \angle DAE$.

2006 Estonia National Olympiad, 3

Let $AG, CH$ be the angle bisectors of a triangle $ABC$. It is known that one of the intersections of the circles of triangles $ABG$ and $ACH$ lies on the side $BC$. Prove that the angle $BAC$ is $60 ^o$

2023 India EGMO TST, P6

Let $ABC$ be an isosceles triangle with $AB = AC$. Suppose $P,Q,R$ are points on segments $AC, AB, BC$ respectively such that $AP = QB$, $\angle PBC = 90^\circ - \angle BAC$ and $RP = RQ$. Let $O_1, O_2$ be the circumcenters of $\triangle APQ$ and $\triangle CRP$. Prove that $BR = O_1O_2$. [i]Proposed by Atul Shatavart Nadig[/i]

2018 Junior Regional Olympiad - FBH, 5

In triangle $ABC$ length of altitude $CH$, with $H \in AB$, is equal to half of side $AB$. If $\angle BAC = 45^{\circ}$ find $\angle ABC$

2020 Ukraine Team Selection Test, 3

Altitudes $AH1$ and $BH2$ of acute triangle $ABC$ intersect at $H$. Let $w1$ be the circle that goes through $H2$ and touches the line $BC$ at $H1$, and let $w2$ be the circle that goes through $H1$ and touches the line $AC$ at $H2$. Prove, that the intersection point of two other tangent lines $BX$ and $AY$( $X$ and $Y$ are different from $H1$ and $H2$) to circles $w1$ and $w2$ respectively, lies on the circumcircle of triangle $HXY$. Proposed by [i]Danilo Khilko[/i]

2022 Switzerland Team Selection Test, 9

Let $ABCD$ be a quadrilateral inscribed in a circle $\Omega.$ Let the tangent to $\Omega$ at $D$ meet rays $BA$ and $BC$ at $E$ and $F,$ respectively. A point $T$ is chosen inside $\triangle ABC$ so that $\overline{TE}\parallel\overline{CD}$ and $\overline{TF}\parallel\overline{AD}.$ Let $K\ne D$ be a point on segment $DF$ satisfying $TD=TK.$ Prove that lines $AC,DT,$ and $BK$ are concurrent.

India EGMO 2022 TST, 5

Let $I$ and $I_A$ denote the incentre and excentre opposite to $A$ of scalene $\triangle ABC$ respectively. Let $A'$ be the antipode of $A$ in $\odot (ABC)$ and $L$ be the midpoint of arc $(BAC)$. Let $LB$ and $LC$ intersect $AI$ at points $Y$ and $Z$ respectively. Prove that $\odot (LYZ)$ is tangent to $\odot (A'II_A)$. [i]~Mahavir Gandhi[/i]

2023 Rioplatense Mathematical Olympiad, 2

Let $ABCD$ be a convex quadrilateral, such that $AB = CD$, $\angle BCD = 2 \angle BAD$, $\angle ABC = 2 \angle ADC$ and $\angle BAD \neq \angle ADC$. Determine the measure of the angle between the diagonals $AC$ and $BD$.

2017 Ukrainian Geometry Olympiad, 1

In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.

2018 IMO Shortlist, G2

Let $ABC$ be a triangle with $AB=AC$, and let $M$ be the midpoint of $BC$. Let $P$ be a point such that $PB<PC$ and $PA$ is parallel to $BC$. Let $X$ and $Y$ be points on the lines $PB$ and $PC$, respectively, so that $B$ lies on the segment $PX$, $C$ lies on the segment $PY$, and $\angle PXM=\angle PYM$. Prove that the quadrilateral $APXY$ is cyclic.

2022 Thailand Online MO, 5

Let $ABC$ be an acute triangle with circumcenter $O$ and orthocenter $H$. Let $M_B$ and $M_C$ be the midpoints of $AC$ and $AB$, respectively. Place points $X$ and $Y$ on line $BC$ such that $\angle HM_BX = \angle HM_CY = 90^{\circ}$. Prove that triangles $OXY$ and $HBC$ are similar.

2021 Iranian Geometry Olympiad, 3

Consider a triangle $ABC$ with altitudes $AD, BE$, and $CF$, and orthocenter $H$. Let the perpendicular line from $H$ to $EF$ intersects $EF, AB$ and $AC$ at $P, T$ and $L$, respectively. Point $K$ lies on the side $BC$ such that $BD=KC$. Let $\omega$ be a circle that passes through $H$ and $P$, that is tangent to $AH$. Prove that circumcircle of triangle $ATL$ and $\omega$ are tangent, and $KH$ passes through the tangency point.

2009 IMAR Test, 3

Consider a convex quadrilateral $ABCD$ with $AB=CB$ and $\angle ABC +2 \angle CDA = \pi$ and let $E$ be the midpoint of $AC$. Show that $\angle CDE =\angle BDA$. Paolo Leonetti