This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 492

2000 239 Open Mathematical Olympiad, 5

Let m be a positive integer. Prove that there exist infinitely many prime numbers p such that m+p^3 is composite.

2010 Postal Coaching, 2

Call a triple $(a, b, c)$ of positive integers a [b]nice[/b] triple if $a, b, c$ forms a non-decreasing arithmetic progression, $gcd(b, a) = gcd(b, c) = 1$ and the product $abc$ is a perfect square. Prove that given a nice triple, there exists some other nice triple having at least one element common with the given triple.

2024 Bulgaria National Olympiad, 1

Is it true that for any positive integer $n>1$, there exists an infinite arithmetic progression $M_n$ of positive integers, such that for any $m \in M_n$, the number $n^m-1$ is not a perfect power (a positive integer is a perfect power if it is of the form $a^b$ for positive integers $a, b>1$)?

2007 China Team Selection Test, 3

Consider a $ 7\times 7$ numbers table $ a_{ij} \equal{} (i^2 \plus{} j)(i \plus{} j^2), 1\le i,j\le 7.$ When we add arbitrarily each term of an arithmetical progression consisting of $ 7$ integers to corresponding to term of certain row (or column) in turn, call it an operation. Determine whether such that each row of numbers table is an arithmetical progression, after a finite number of operations.

2010 Contests, 3

Suppose that $a_1,...,a_{15}$ are prime numbers forming an arithmetic progression with common difference $d > 0$ if $a_1 > 15$ show that $d > 30000$

1994 China Team Selection Test, 2

An $n$ by $n$ grid, where every square contains a number, is called an $n$-code if the numbers in every row and column form an arithmetic progression. If it is sufficient to know the numbers in certain squares of an $n$-code to obtain the numbers in the entire grid, call these squares a key. [b]a.) [/b]Find the smallest $s \in \mathbb{N}$ such that any $s$ squares in an $n-$code $(n \geq 4)$ form a key. [b]b.)[/b] Find the smallest $t \in \mathbb{N}$ such that any $t$ squares along the diagonals of an $n$-code $(n \geq 4)$ form a key.

2012 Romania Team Selection Test, 5

Let $p$ and $q$ be two given positive integers. A set of $p+q$ real numbers $a_1<a_2<\cdots <a_{p+q}$ is said to be balanced iff $a_1,\ldots,a_p$ were an arithmetic progression with common difference $q$ and $a_p,\ldots,a_{p+q}$ where an arithmetic progression with common difference $p$. Find the maximum possible number of balanced sets, so that any two of them have nonempty intersection. Comment: The intended problem also had "$p$ and $q$ are coprime" in the hypothesis. A typo when the problems where written made it appear like that in the exam (as if it were the only typo in the olympiad). Fortunately, the problem can be solved even if we didn't suppose that and it can be further generalized: we may suppose that a balanced set has $m+n$ reals $a_1<\cdots <a_{m+n-1}$ so that $a_1,\ldots,a_m$ is an arithmetic progression with common difference $p$ and $a_m,\ldots,a_{m+n-1}$ is an arithmetic progression with common difference $q$.

1987 Romania Team Selection Test, 3

Let $A$ be the set $A = \{ 1,2, \ldots, n\}$. Determine the maximum number of elements of a subset $B\subset A$ such that for all elements $x,y$ from $B$, $x+y$ cannot be divisible by $x-y$. [i]Mircea Lascu, Dorel Mihet[/i]

1983 IMO, 2

Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?

1998 Tuymaada Olympiad, 7

All possible sequences of numbers $-1$ and $+1$ of length $100$ are considered. For each of them, the square of the sum of the terms is calculated. Find the arithmetic average of the resulting values.

2012 BMT Spring, 1

Let $ \{a_n\}_{n=1}^\infty $ be an arithmetic progression with $ a_1 > 0 $ and $ 5\cdot a_{13} = 6\cdot a_{19} $ . What is the smallest integer $ n$ such that $ a_n<0 $?

2012 Brazil National Olympiad, 6

Find all surjective functions $f\colon (0,+\infty) \to (0,+\infty)$ such that $2x f(f(x)) = f(x)(x+f(f(x)))$ for all $x>0$.

2017 Purple Comet Problems, 1

Paul starts at $1$ and counts by threes: $1, 4, 7, 10, ... $. At the same time and at the same speed, Penny counts backwards from $2017$ by fi ves: $2017, 2012, 2007, 2002,...$ . Find the one number that both Paul and Penny count at the same time.

1999 IMO Shortlist, 6

Prove that for every real number $M$ there exists an infinite arithmetic progression such that: - each term is a positive integer and the common difference is not divisible by 10 - the sum of the digits of each term (in decimal representation) exceeds $M$.

1970 IMO Longlists, 53

A square $ABCD$ is divided into $(n - 1)^2$ congruent squares, with sides parallel to the sides of the given square. Consider the grid of all $n^2$ corners obtained in this manner. Determine all integers $n$ for which it is possible to construct a non-degenerate parabola with its axis parallel to one side of the square and that passes through exactly $n$ points of the grid.

2023 Moldova Team Selection Test, 12

The sequence $\left(a_n \right)$ is defined by $a_1=1, \ a_2=2$ and $$a_{n+2} = 2a_{n+1}-pa_n, \ \forall n \ge 1,$$ for some prime $p.$ Find all $p$ for which there exists $m$ such that $a_m=-3.$

1960 AMC 12/AHSME, 36

Let $s_1, s_2, s_3$ be the respective sums of $n$, $2n$, $3n$ terms of the same arithmetic progression with $a$ as the first term and $d$ as the common difference. Let $R=s_3-s_2-s_1$. Then $R$ is dependent on: $ \textbf{(A)}\ a \text{ } \text{and} \text{ } d\qquad\textbf{(B)}\ d \text{ } \text{and} \text{ } n\qquad\textbf{(C)}\ a \text{ } \text{and} \text{ } n\qquad\textbf{(D)}\ a, d, \text{ } \text{and} \text{ } n\qquad$ $\textbf{(E)}\ \text{neither} \text{ } a \text{ } \text{nor} \text{ } d \text{ } \text{nor} \text{ } n $

2015 Junior Balkan Team Selection Tests - Romania, 3

Can we partition the positive integers in two sets such that none of the sets contains an infinite arithmetic progression of nonzero ratio ?

2015 Romania Team Selection Tests, 3

Given a positive real number $t$ , determine the sets $A$ of real numbers containing $t$ , for which there exists a set $B$ of real numbers depending on $A$ , $|B| \geq 4$ , such that the elements of the set $AB =\{ ab \mid a\in A , b \in B \}$ form a finite arithmetic progression .

2012 Serbia JBMO TST, 3

Let $a, \overline{bcd}, \overline{aef}, \overline{cfg}, \overline{hci}, \overline{dea}, \overline{ifd}, \overline{jgf}, \overline{bfeg},\ldots$ be an increasing arithmetic progression. Find the $16$th term of this sequence.

1998 Singapore Team Selection Test, 3

An infinite arithmetic progression whose terms are positive integers contains the square of an integer and the cube of an integer. Show that it contains the sixth power of an integer.

2011 Akdeniz University MO, 4

$a_n$ sequence is a arithmetic sequence with all terms be positive integers. (for $a_n$ non-constant sequence) Let $p_n$ is greatest prime divisor of $a_n$. Prove that $$(\frac{a_n}{p_n})$$ sequence is infinity. [hide]Note: If we find a $M>0$ constant such that $x_n \leq M$ for all $n \in {\mathbb N}$'s, $(x_n)$ sequence is non-infinite, but we can't find $M$, $(x_n)$ sequence is infinity [/hide]

2013 Nordic, 2

In a football tournament there are n teams, with ${n \ge 4}$, and each pair of teams meets exactly once. Suppose that, at the end of the tournament, the final scores form an arithmetic sequence where each team scores ${1}$ more point than the following team on the scoreboard. Determine the maximum possible score of the lowest scoring team, assuming usual scoring for football games (where the winner of a game gets ${3}$ points, the loser ${0}$ points, and if there is a tie both teams get ${1}$ point).

2015 CIIM, Problem 6

Show that there exists a real $C > 1$ that satisfy the following property: if $n > 1$ and $a_0 < a_1 < \cdots < a_n$ are positive integers such that $\frac{1}{a_0},\frac{1}{a_1},\dots,\frac{1}{a_n}$ are in arithmetic progression, then $a_0 > C^n.$

2014 Danube Mathematical Competition, 3

Given any integer $n \ge 2$, show that there exists a set of $n$ pairwise coprime composite integers in arithmetic progression.