This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 63

Swiss NMO - geometry, 2009.5

Let $ABC$ be a triangle with $AB \ne AC$ and incenter $I$. The incircle touches $BC$ at $D$. Let $M$ be the midpoint of $BC$ . Show that the line $IM$ bisects segment $AD$ .

1953 Moscow Mathematical Olympiad, 235

Divide a segment in halves using a right triangle. (With a right triangle one can draw straight lines and erect perpendiculars but cannot draw perpendiculars.)

2020 Novosibirsk Oral Olympiad in Geometry, 4

The altitudes $AN$ and $BM$ are drawn in triangle $ABC$. Prove that the perpendicular bisector to the segment $NM$ divides the segment $AB$ in half.

Cono Sur Shortlist - geometry, 2020.G4

Let $ABC$ be a triangle with circumcircle $\omega$. The bisector of $\angle BAC$ intersects $\omega$ at point $A_1$. Let $A_2$ be a point on the segment $AA_1$, $CA_2$ cuts $AB$ and $\omega$ at points $C_1$ and $C_2$, respectively. Similarly, $BA_2$ cuts $AC$ and $\omega$ at points $B_1$ and $B_2$, respectively. Let $M$ be the intersection point of $B_1C_2$ and $B_2C_1$. Prove that $MA_2$ passes the midpoint of $BC$. [i]proposed by Jhefferson Lopez, Perú[/i]

2019 Yasinsky Geometry Olympiad, p3

Let $ABCD$ be an inscribed quadrilateral whose diagonals are connected internally. are perpendicular to each other and intersect at the point $P$. Prove that the line connecting the midpoints of the opposite sides of the quadrilateral $ABCD$ bisects the lines $OP$ ($O$ is the center of the circle circumscribed around quadrilateral $ABCD$). (Alexander Dunyak)

2021 Sharygin Geometry Olympiad, 7

The incircle of triangle $ABC$ centered at $I$ touches $CA,AB$ at points $E,F$ respectively. Let points $M,N$ of line $EF$ be such that $CM=CE$ and $BN=BF$. Lines $BM$ and $CN$ meet at point $P$. Prove that $PI$ bisects segment $MN$.

2012 China Northern MO, 7

As shown in figure , in the pentagon $ABCDE$, $BC = DE$, $CD \parallel BE$, $AB>AE$. If $\angle BAC = \angle DAE$ and $\frac{AB}{BD}=\frac{AE}{ED}$. Prove that $AC$ bisects the line segment $BE$. [img]https://cdn.artofproblemsolving.com/attachments/3/2/5ce44f1e091786b865ae4319bda56c3ddbb8d7.png[/img]

2021 Ukraine National Mathematical Olympiad, 6

The altitudes $AA_1, BB_1$ and $CC_1$ were drawn in the triangle $ABC$. Point $K$ is a projection of point $B$ on $A_1C_1$. Prove that the symmmedian $\vartriangle ABC$ from the vertex $B$ divides the segment $B_1K$ in half. (Anton Trygub)

2023 Iranian Geometry Olympiad, 4

Let $ABC$ be a triangle with bisectors $BE$ and $CF$ meet at $I$. Let $D$ be the projection of $I$ on the $BC$. Let M and $N$ be the orthocenters of triangles $AIF$ and $AIE$, respectively. Lines $EM$ and $FN$ meet at $P.$ Let $X$ be the midpoint of $BC$. Let $Y$ be the point lying on the line $AD$ such that $XY \perp IP$. Prove that line $AI$ bisects the segment $XY$. [i]Proposed by Tran Quang Hung - Vietnam[/i]

2015 Latvia Baltic Way TST, 6

$AM$ is the median of triangle $ABC$. A perpendicular $CC_1$ is drawn from point $C$ on the bisector of angle $\angle CMA$, a perpendicular $BB_1$ is drawn from point $B$ on the bisector of angle $\angle BMA$. Prove that line $AM$ intersects segment $B_1C_1$ at its midpoint.

Kyiv City MO Juniors 2003+ geometry, 2018.9.5

Given a triangle $ABC$, the perpendicular bisector of the side $AC$ intersects the angle bisector of the triangle $AK$ at the point $P$, $M$ - such a point that $\angle MAC = \angle PCB$, $\angle MPA = \angle CPK$, and points $M$ and $K$ lie on opposite sides of the line $AC$. Prove that the line $AK$ bisects the segment $BM$. (Anton Trygub)

VI Soros Olympiad 1999 - 2000 (Russia), 8.4

Let $CH$ be the altitude of triangle ABC, $O$ be the center of the circle circumscribed around it. Point $T$ is the projection of point $C$ on the line $TO$. Prove that the line $TH$ bisects the side $BC$.

2022 New Zealand MO, 7

Let $M$ be the midpoint of side $BC$ of acute triangle $ABC$. The circle centered at $M$ passing through $A$ intersects the lines $AB$ and $AC$ again at $P$ and $Q$, respectively. The tangents to this circle at $P$ and $Q$ meet at $D$. Prove that the perpendicular bisector of $BC$ bisects segment $AD$.

2019-IMOC, G3

Given a scalene triangle $\vartriangle ABC$ has orthocenter $H$ and circumcircle $\Omega$. The tangent lines passing through $A,B,C$ are $\ell_a,\ell_b,\ell_c$. Suppose that the intersection of $\ell_b$ and $\ell_c$ is $D$. The foots of $H$ on $\ell_a,AD$ are $P,Q$ respectively. Prove that $PQ$ bisects segment $BC$. [img]https://4.bp.blogspot.com/-iiQoxMG8bEs/XnYNK7R8S3I/AAAAAAAALeY/FYvSuF6vQQsofASnXJUgKZ1T9oNnd-02ACK4BGAYYCw/s400/imoc2019g3.png[/img]

2021 Sharygin Geometry Olympiad, 8.7

Let $ABCDE$ be a convex pentagon such that angles $CAB$, $BCA$, $ECD$, $DEC$ and $AEC$ are equal. Prove that $CE$ bisects $BD$.

2011 Dutch IMO TST, 5

Let $ABC$ be a triangle with $|AB|> |BC|$. Let $D$ be the midpoint of $AC$. Let $E$ be the intersection of the angular bisector of $\angle ABC$ and the line $AC$. Let $F$ be the point on $BE$ such that $CF$ is perpendicular to $BE$. Finally, let $G$ be the intersection of $CF$ and $BD$. Prove that $DF$ divides the line segment $EG$ into two equal parts.

Kyiv City MO Juniors 2003+ geometry, 2013.9.5

The two circles ${{w} _ {1}}, \, \, {{w} _ {2}}$ touch externally at the point $Q$. The common external tangent of these circles is tangent to ${{w} _ {1}}$ at the point $B$, $BA$ is the diameter of this circle. A tangent to the circle ${{w} _ {2}} $ is drawn through the point $A$, which touches this circle at the point $C$, such that the points $B$ and $C$ lie in one half-plane relative to the line $AQ$. Prove that the circle ${{w} _ {1}}$ bisects the segment $C $. (Igor Nagel)

2009 Switzerland - Final Round, 5

Let $ABC$ be a triangle with $AB \ne AC$ and incenter $I$. The incircle touches $BC$ at $D$. Let $M$ be the midpoint of $BC$ . Show that the line $IM$ bisects segment $AD$ .

1996 Singapore Senior Math Olympiad, 1

$PQ, CD$ are parallel chords of a circle. The tangent at $D$ cuts $PQ$ at $T$ and $B$ is the point of contact of the other tangent from $T$ (Fig. ). Prove that $BC$ bisects $PQ$. [img]https://cdn.artofproblemsolving.com/attachments/2/f/22f69c03601fbb8e388e319cd93567246b705c.png[/img]

2020 Regional Olympiad of Mexico Northeast, 2

Let $A$, $B$, $C$ and $D$ be points on the same circumference with $\angle BCD=90^\circ$. Let $P$ and $Q$ be the projections of $A$ onto $BD$ and $CD$, respectively. Prove that $PQ$ cuts the segment $AC$ into equal parts.

Kharkiv City MO Seniors - geometry, 2019.11.5

In the acute-angled triangle $ABC$, let $CD, AE$ be the altitudes. Points $F$ and $G$ are the projections of $A$ and $C$ on the line $DE$, respectively, $H$ and $K$ are the projections of $D$ and $E$ on the line $AC$, respectively. The lines $HF$ and $KG$ intersect at point $P$. Prove that line $BP$ bisects the segment $DE$.

Swiss NMO - geometry, 2013.7

Let $O$ be the center of the circle of the triangle $ABC$ with $AB \ne AC$. Furthermore, let $S$ and $T$ be points on the rays $AB$ and $AC$, such that $\angle ASO = \angle ACO$ and $\angle ATO = \angle ABO$. Show that $ST$ bisects the segment $BC$.

2019 Tournament Of Towns, 4

Let $OP$ and $OQ$ be the perpendiculars from the circumcenter $O$ of a triangle $ABC$ to the internal and external bisectors of the angle $B$. Prove that the line$ PQ$ divides the segment connecting midpoints of $CB$ and $AB$ into two equal parts. (Artemiy Sokolov)

2011 Saudi Arabia BMO TST, 3

Let $ABCDE$ be a convex pentagon such that $\angle BAC = \angle CAD = \angle DAE$ and $\angle ABC = \angle ACD = \angle ADE$. Diagonals $BD$ and $CE$ meet at $P$. Prove that $AP$ bisects side $CD$.

2017 Regional Olympiad of Mexico West, 2

From a point $P$, two tangent lines are drawn to a circle $\Gamma$, which touch it at points $A$ and $B$. A circle $\Phi$ is drawn with center at $P$ and passes through $A$ and $B$ and is taken a point $R$ that is on the circumference $\Phi$ and in the interior of $\Gamma$. The straight line $PR$ intersects $\Gamma$ at the points $S$ and $Q$. The straight lines $AR$ and $BR$ meet $\Gamma$ again at points $C$ and $D$, respectively. Prove that $CD$ passes through the midpoint of $SQ$.