Found problems: 2215
2001 District Olympiad, 3
Consider a continuous function $f:[0,1]\rightarrow \mathbb{R}$ such that for any third degree polynomial function $P:[0,1]\to [0,1]$, we have
\[\int_0^1f(P(x))dx=0\]
Prove that $f(x)=0,\ (\forall)x\in [0,1]$.
[i]Mihai Piticari[/i]
2009 AMC 12/AHSME, 21
Let $ p(x) \equal{} x^3 \plus{} ax^2 \plus{} bx \plus{} c$, where $ a$, $ b$, and $ c$ are complex numbers. Suppose that
\[ p(2009 \plus{} 9002\pi i) \equal{} p(2009) \equal{} p(9002) \equal{} 0
\]What is the number of nonreal zeros of $ x^{12} \plus{} ax^8 \plus{} bx^4 \plus{} c$?
$ \textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$
2007 Today's Calculation Of Integral, 241
1.Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of a parabola $ y \equal{} ax^2 \plus{} bx \plus{} c\ (a\neq 0)$ and the line $ y \equal{} ux \plus{} v$.
Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a|}{6}(\beta \minus{} \alpha )^3}$.
2. Let $ x \equal{} \alpha ,\ \beta \ (\alpha < \beta )$ are $ x$ coordinates of the intersection points of parabolas $ y \equal{} ax^2 \plus{} bx \plus{} c$ and $ y \equal{} px^2 \plus{} qx \plus{} r\ (ap\neq 0)$.
Prove that the area of the region bounded by these graphs is $ \boxed{\frac {|a \minus{} p|}{6}(\beta \minus{} \alpha )^3}$.
2021 The Chinese Mathematics Competition, Problem 8
Consider a homogeneous function with degree $4$.
$f(x,y,z)=a_1x^4+a_2y^4+a_3z^4+3a_4x^2y^2+3a_5y^2z^2+3a_6x^2z^2$.
Find $\oiint_{\sum} f(x,y,z)dS$, where $\sum: x^2+y^2+z^2=1$.
2010 Victor Vâlcovici, 2
Let $ f:[2,\infty )\rightarrow\mathbb{R} $ be a differentiable function satisfying $ f(2)=0 $ and
$$ \frac{df}{dx}=\frac{2}{x^2+f^4{x}} , $$
for any $ x\in [2,\infty ) . $ Show that there exists $ \lim_{x\to\infty } f(x) $ and is at most $ \ln 3. $
[i]Gabriel Daniilescu[/i]
2011 China National Olympiad, 2
Let $a_i,b_i,i=1,\cdots,n$ are nonnegitive numbers,and $n\ge 4$,such that $a_1+a_2+\cdots+a_n=b_1+b_2+\cdots+b_n>0$.
Find the maximum of $\frac{\sum_{i=1}^n a_i(a_i+b_i)}{\sum_{i=1}^n b_i(a_i+b_i)}$
2012 Waseda University Entrance Examination, 5
Take two points $A\ (-1,\ 0),\ B\ (1,\ 0)$ on the $xy$-plane. Let $F$ be the figure by which the whole points $P$ on the plane satisfies $\frac{\pi}{4}\leq \angle{APB}\leq \pi$ and the figure formed by $A,\ B$.
Answer the following questions:
(1) Illustrate $F$.
(2) Find the volume of the solid generated by a rotation of $F$ around the $x$-axis.
1991 Arnold's Trivium, 52
Calculate the first term of the asymptotic expression as $k\to\infty$ of the integral
\[\int_{-\infty}^{+\infty}\frac{e^{ikx}}{\sqrt{1+x^{2n}}}dx\]
2007 District Olympiad, 2
Let $f : \left[ 0, 1 \right] \to \mathbb R$ be a continuous function and $g : \left[ 0, 1 \right] \to \left( 0, \infty \right)$.
Prove that if $f$ is increasing, then
\[\int_{0}^{t}f(x) g(x) \, dx \cdot \int_{0}^{1}g(x) \, dx \leq \int_{0}^{t}g(x) \, dx \cdot \int_{0}^{1}f(x) g(x) \, dx .\]
2005 IberoAmerican Olympiad For University Students, 6
A smooth function $f:I\to \mathbb{R}$ is said to be [i]totally convex[/i] if $(-1)^k f^{(k)}(t) > 0$ for all $t\in I$ and every integer $k>0$ (here $I$ is an open interval).
Prove that every totally convex function $f:(0,+\infty)\to \mathbb{R}$ is real analytic.
[b]Note[/b]: A function $f:I\to \mathbb{R}$ is said to be [i]smooth[/i] if for every positive integer $k$ the derivative of order $k$ of $f$ is well defined and continuous over $\mathbb{R}$. A smooth function $f:I\to \mathbb{R}$ is said to be [i]real analytic[/i] if for every $t\in I$ there exists $\epsilon> 0$ such that for all real numbers $h$ with $|h|<\epsilon$ the Taylor series
\[\sum_{k\geq 0}\frac{f^{(k)}(t)}{k!}h^k\]
converges and is equal to $f(t+h)$.
2010 Today's Calculation Of Integral, 546
Find the minimum value of $ \int_0^{\pi} \left(x \minus{} \pi a \minus{} \frac {b}{\pi}\cos x\right)^2dx$.
2005 Today's Calculation Of Integral, 89
For $f(x)=x^4+|x|,$ let $I_1=\int_0^\pi f(\cos x)\ dx,\ I_2=\int_0^\frac{\pi}{2} f(\sin x)\ dx.$
Find the value of $\frac{I_1}{I_2}.$
2017 Romania National Olympiad, 1
[b]a)[/b] Let be a continuous function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{>0} . $ Show that there exists a natural number $ n_0 $ and a sequence of positive real numbers $ \left( x_n \right)_{n>n_0} $ that satisfy the following relation.
$$ n\int_0^{x_n} f(t)dt=1,\quad n_0<\forall n\in\mathbb{N} $$
[b]b)[/b] Prove that the sequence $ \left( nx_n \right)_{n> n_0} $ is convergent and find its limit.
1941 Putnam, B7
Do either (1) or (2):
(1) Show that any solution $f(t)$ of the functional equation
$$f(x+y)f(x-y)=f(x)^{2} +f(y)^{2} -1$$
for $x,y\in \mathbb{R}$ satisfies
$$f''(t)= \pm c^{2} f(t)$$
for a constant $c$, assuming the existence and continuity of the second derivative.
Deduce that $f(t)$ is one of the functions
$$ \pm \cos ct, \;\;\; \pm \cosh ct.$$
(2) Let $(a_{i})_{i=1,...,n}$ and $(b_{i})_{i=1,...,n}$ be real numbers. Define an $(n+1)\times (n+1)$-matrix $A=(c_{ij})$ by
$$ c_{i1}=1, \; \; c_{1j}= x^{j-1} \; \text{for} \; j\leq n,\; \; c_{1n+1}=p(x), \;\; c_{ij}=a_{i-1}^{j-1} \; \text{for}\; i>1, j\leq n,\;\;
c_{in+1}=b_{i-1}\; \text{for}\; i>1.$$
The polynomial $p(x)$ is defined by the equation $\det A=0$. Let $f$ be a polynomial and replace $(b_{i})$ with $(f(b_{i}))$. Then $\det A=0$ defines another polynomial $q(x)$. Prove that $f(p(x))-q(x)$ is a multiple of
$$\prod_{i=1}^{n} (x-a_{i}).$$
2006 Vietnam National Olympiad, 4
Given is the function $f(x)=-x+\sqrt{(x+a)(x+b)}$, where $a$, $b$ are distinct given positive real numbers. Prove that for all real numbers $s\in (0,1)$ there exist only one positive real number $\alpha$ such that \[ f(\alpha)=\sqrt [s]{\frac{a^s+b^s}{2}} . \]
2012 Today's Calculation Of Integral, 850
Evaluate
\[\int_0^{\pi} \{(1-x\sin 2x)e^{\cos ^2 x}+(1+x\sin 2x)e^{\sin ^ 2 x}\}\ dx.\]
1993 Balkan MO, 2
A positive integer given in decimal representation $\overline{ a_na_{n-1} \ldots a_1a_0 }$ is called [i]monotone[/i] if $a_n\leq a_{n-1} \leq \cdots \leq a_0$. Determine the number of monotone positive integers with at most 1993 digits.
2021 CMIMC Integration Bee, 10
$$\int_{-\infty}^\infty\frac{x\arctan(x)}{x^4+1}\,dx$$
[i]Proposed by Connor Gordon[/i]
1964 Miklós Schweitzer, 2
Let $ p$ be a prime and let \[ l_k(x,y)\equal{}a_kx\plus{}b_ky \;(k\equal{}1,2,...,p^2)\ .\] be homogeneous linear polynomials with integral coefficients. Suppose that for every pair $ (\xi,\eta)$ of integers, not both divisible by $ p$, the values $ l_k(\xi,\eta), \;1\leq k\leq p^2 $, represent every residue class $ \textrm{mod} \;p$ exactly $ p$ times. Prove that the set of pairs $ \{(a_k,b_k): 1\leq k \leq p^2 \}$ is identical $ \textrm{mod} \;p$ with the set $ \{(m,n): 0\leq m,n \leq p\minus{}1 \}.$
1997 China Team Selection Test, 3
Prove that there exists $m \in \mathbb{N}$ such that there exists an integral sequence $\lbrace a_n \rbrace$ which satisfies:
[b]I.[/b] $a_0 = 1, a_1 = 337$;
[b]II.[/b] $(a_{n + 1} a_{n - 1} - a_n^2) + \frac{3}{4}(a_{n + 1} + a_{n - 1} - 2a_n) = m, \forall$ $n \geq 1$;
[b]III. [/b]$\frac{1}{6}(a_n + 1)(2a_n + 1)$ is a perfect square $\forall$ $n \geq 1$.
2011 Today's Calculation Of Integral, 713
If a positive sequence $\{a_n\}_{n\geq 1}$ satisfies $\int_0^{a_n} x^{n}\ dx=2$, then find $\lim_{n\to\infty} a_n.$
2011 Today's Calculation Of Integral, 714
Find the area enclosed by the graph of $a^2x^4=b^2x^2-y^2\ (a>0,\ b>0).$
Today's calculation of integrals, 897
Find the volume $V$ of the solid formed by a rotation of the region enclosed by the curve $y=2^{x}-1$ and two lines $x=0,\ y=1$ around the $y$ axis.
2006 Flanders Math Olympiad, 4
Find all functions $f: \mathbb{R}\backslash\{0,1\} \rightarrow \mathbb{R}$ such that
\[ f(x)+f\left(\frac{1}{1-x}\right) = 1+\frac{1}{x(1-x)}. \]
2003 District Olympiad, 4
Consider the continuous functions $ f:[0,\infty )\longrightarrow\mathbb{R}, g: [0,1]\longrightarrow\mathbb{R} , $ where $
f $ has a finite limit at $ \infty . $ Show that:
$$ \lim_{n \to \infty} \frac{1}{n}\int_0^n f(x) g\left( \frac{x}{n} \right) dx =\int_0^1 g(x)dx\cdot\lim_{x\to\infty} f(x) . $$