This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2021 Nigerian MO Round 3, Problem 5

Let $f(x)=\frac{P(x)}{Q(x)}$, where $P(x), Q(x)$ are two non-constant polynomials with no common zeros and $P(0)=P(1)=0$. Suppose $f(x)f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$ for infinitely many values of $x$. a) Show that $\text{deg}(P)<\text{deg}(Q)$. b) Show that $P'(1)=2Q'(1)-\text{deg}(Q)\cdot Q(1)$. Here, $P'(x)$ denotes the derivative of $P(x)$ as usual.

2001 IMO Shortlist, 2

Let $a_0, a_1, a_2, \ldots$ be an arbitrary infinite sequence of positive numbers. Show that the inequality $1 + a_n > a_{n-1} \sqrt[n]{2}$ holds for infinitely many positive integers $n$.

2022 CMIMC Integration Bee, 15

\[\int_0^\infty 1+\frac{2}{\sqrt[x]{8}}-\frac{3}{\sqrt[x]{4}}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2012 Today's Calculation Of Integral, 782

Let $C$ be the part of the graph $y=\frac{1}{x}\ (x>0)$. Take a point $P\left(t,\ \frac{1}{t}\right)\ (t>0)$ on $C$. (i) Find the equation of the tangent $l$ at the point $A(1,\ 1)$ on the curve $C$. (ii) Let $m$ be the line passing through the point $P$ and parallel to $l$. Denote $Q$ be the intersection point of the line $m$ and the curve $C$ other than $P$. Find the coordinate of $Q$. (iii) Express the area $S$ of the part bounded by two line segments $OP,\ OQ$ and the curve $C$ for the origin $O$ in terms of $t$. (iv) Express the volume $V$ of the solid generated by a rotation of the part enclosed by two lines passing through the point $P$ and pararell to the $y$-axis and passing through the point $Q$ and pararell to $y$-axis, the curve $C$ and the $x$-axis in terms of $t$. (v) $\lim_{t\rightarrow 1-0} \frac{S}{V}.$

2005 Today's Calculation Of Integral, 81

Prove the following inequality. \[\frac{1}{12}(\pi -6+2\sqrt{3})\leq \int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \ln (1+\cos 2x) dx\leq \frac{1}{4}(2-\sqrt{3})\]

2007 Romania National Olympiad, 4

Let $ m,n$ be two natural numbers with $ m > 1$ and $ 2^{2m \plus{} 1} \minus{} n^2\geq 0$. Prove that: \[ 2^{2m \plus{} 1} \minus{} n^2\geq 7 .\]

2004 Harvard-MIT Mathematics Tournament, 3

Tags: limit , calculus
Find \[ \lim_{x \to \infty} \left( \sqrt[3]{x^3 + x^2}-\sqrt[3]{x^3-x^2} \right). \]

2007 Moldova National Olympiad, 12.7

Find the limit \[\lim_{n\to \infty}\frac{\sqrt[n+1]{(2n+3)(2n+4)\ldots (3n+3)}}{n+1}\]

1977 IMO Longlists, 52

Tags: geometry , calculus
Two perpendicular chords are drawn through a given interior point $P$ of a circle with radius $R.$ Determine, with proof, the maximum and the minimum of the sum of the lengths of these two chords if the distance from $P$ to the center of the circle is $kR.$

2012 Bosnia Herzegovina Team Selection Test, 3

Prove that for all odd prime numbers $p$ there exist a natural number $m<p$ and integers $x_1, x_2, x_3$ such that: \[mp=x_1^2+x_2^2+x_3^2.\]

2004 China Team Selection Test, 3

Given arbitrary positive integer $ a$ larger than $ 1$, show that for any positive integer $ n$, there always exists a n-degree integral coefficient polynomial $ p(x)$, such that $ p(0)$, $ p(1)$, $ \cdots$, $ p(n)$ are pairwise distinct positive integers, and all have the form of $ 2a^k\plus{}3$, where $ k$ is also an integer.

2007 Today's Calculation Of Integral, 187

For a constant $a,$ let $f(x)=ax\sin x+x+\frac{\pi}{2}.$ Find the range of $a$ such that $\int_{0}^{\pi}\{f'(x)\}^{2}\ dx \geq f\left(\frac{\pi}{2}\right).$

2006 Romania National Olympiad, 4

Let $f: [0,1]\to\mathbb{R}$ be a continuous function such that \[ \int_{0}^{1}f(x)dx=0. \] Prove that there is $c\in (0,1)$ such that \[ \int_{0}^{c}xf(x)dx=0. \] [i]Cezar Lupu, Tudorel Lupu[/i]

2006 Romania National Olympiad, 4

Let $a,b,c \in \left[ \frac 12, 1 \right]$. Prove that \[ 2 \leq \frac{ a+b}{1+c} + \frac{ b+c}{1+a} + \frac{ c+a}{1+b} \leq 3 . \] [i]selected by Mircea Lascu[/i]

1990 IMO Longlists, 35

Prove that if $|x| < 1$, then \[ \frac{x}{(1-x)^2}+\frac{x^2}{(1+x^2)^2} + \frac{x^3}{(1-x^3)^2}+\cdots=\frac{x}{1-x}+\frac{2x^2}{1+x^2}+\frac{3x^3}{1-x^3}+\cdots\]

2012 Today's Calculation Of Integral, 799

Let $n$ be positive integer. Define a sequence $\{a_k\}$ by \[a_1=\frac{1}{n(n+1)},\ a_{k+1}=-\frac{1}{k+n+1}+\frac{n}{k}\sum_{i=1}^k a_i\ \ (k=1,\ 2,\ 3,\ \cdots).\] (1) Find $a_2$ and $a_3$. (2) Find the general term $a_k$. (3) Let $b_n=\sum_{k=1}^n \sqrt{a_k}$. Prove that $\lim_{n\to\infty} b_n=\ln 2$. 50 points

2007 Bulgaria National Olympiad, 3

Let $P(x)\in \mathbb{Z}[x]$ be a monic polynomial with even degree. Prove that, if for infinitely many integers $x$, the number $P(x)$ is a square of a positive integer, then there exists a polynomial $Q(x)\in\mathbb{Z}[x]$ such that $P(x)=Q(x)^2$.

2010 Today's Calculation Of Integral, 573

Find the area of the figure bounded by three curves $ C_1: y\equal{}\sin x\ \left(0\leq x<\frac {\pi}{2}\right)$ $ C_2: y\equal{}\cos x\ \left(0\leq x<\frac {\pi}{2}\right)$ $ C_3: y\equal{}\tan x\ \left(0\leq x<\frac {\pi}{2}\right)$.

2012 Today's Calculation Of Integral, 852

Let $f(x)$ be a polynomial. Prove that if $\int_0^1 f(x)g_n(x)\ dx=0\ (n=0,\ 1,\ 2,\ \cdots)$, then all coefficients of $f(x)$ are 0 for each case as follows. (1) $g_n(x)=(1+x)^n$ (2) $g_n(x)=\sin n\pi x$ (3) $g_n(x)=e^{nx}$

1985 Traian Lălescu, 1.2

Calculate $ \sum_{i=2}^{\infty}\frac{i^2-2}{i!} . $

2008 India Regional Mathematical Olympiad, 3

Suppose $ a$ and $ b$ are real numbers such that the roots of the cubic equation $ ax^3\minus{}x^2\plus{}bx\minus{}1$ are positive real numbers. Prove that: \[ (i)\ 0<3ab\le 1\text{ and }(i)\ b\ge \sqrt{3} \] [19 points out of 100 for the 6 problems]

2010 Today's Calculation Of Integral, 576

For a function $ f(x)\equal{}(\ln x)^2\plus{}2\ln x$, let $ C$ be the curve $ y\equal{}f(x)$. Denote $ A(a,\ f(a)),\ B(b,\ f(b))\ (a<b)$ the points of tangency of two tangents drawn from the origin $ O$ to $ C$ and the curve $ C$. Answer the following questions. (1) Examine the increase and decrease, extremal value and inflection point , then draw the approximate garph of the curve $ C$. (2) Find the values of $ a,\ b$. (3) Find the volume by a rotation of the figure bounded by the part from the point $ A$ to the point $ B$ and line segments $ OA,\ OB$ around the $ y$-axis.

2021 ISI Entrance Examination, 4

Tags: function , calculus
Let $g:(0,\infty) \rightarrow (0,\infty)$ be a differentiable function whose derivative is continuous, and such that $g(g(x)) = x$ for all $x> 0$. If $g$ is not the identity function, prove that $g$ must be strictly decreasing.

2019 Brazil Undergrad MO, 3

Let $a,b,c$ be constants and $a,b,c$ are positive real numbers. Prove that the equations $2x+y+z=\sqrt{c^2+z^2}+\sqrt{c^2+y^2}$ $x+2y+z=\sqrt{b^2+x^2}+\sqrt{b^2+z^2}$ $x+y+2z=\sqrt{a^2+x^2}+\sqrt{a^2+y^2}$ have exactly one real solution $(x,y,z)$ with $x,y,z \geq 0$.

2013 Stanford Mathematics Tournament, 2

Tags: calculus
Compute all real values of $b$ such that, for $f(x) = x^2+bx-17, f(4)=f'(4)$.