Found problems: 2215
1998 Harvard-MIT Mathematics Tournament, 2
A cube with sides 1m in length is filled with water, and has a tiny hole through which the water drains into a cylinder of radius $1\text{ m}$. If the water level in the cube is falling at a rate of $1 \text{ cm/s}$, at what rate is the water level in the cylinder rising?
2012 ELMO Shortlist, 6
Let $a,b,c\ge0$. Show that $(a^2+2bc)^{2012}+(b^2+2ca)^{2012}+(c^2+2ab)^{2012}\le (a^2+b^2+c^2)^{2012}+2(ab+bc+ca)^{2012}$.
[i]Calvin Deng.[/i]
2009 Today's Calculation Of Integral, 448
Evaluate $ \int_0^{\ln 2} \frac {2e^x \plus{} 1}{e^{3x} \plus{} 2e^{2x} \plus{} e^{x} \minus{} e^{ \minus{} x}}\ dx.$
2011 China Team Selection Test, 2
Let $\ell$ be a positive integer, and let $m,n$ be positive integers with $m\geq n$, such that $A_1,A_2,\cdots,A_m,B_1,\cdots,B_m$ are $m+n$ pairwise distinct subsets of the set $\{1,2,\cdots,\ell\}$. It is known that $A_i\Delta B_j$ are pairwise distinct, $1\leq i\leq m, 1\leq j\leq n$, and runs over all nonempty subsets of $\{1,2,\cdots,\ell\}$. Find all possible values of $m,n$.
2011 Iran Team Selection Test, 10
Find the least value of $k$ such that for all $a,b,c,d \in \mathbb{R}$ the inequality
\[ \begin{array} c \sqrt{(a^2+1)(b^2+1)(c^2+1)} +\sqrt{(b^2+1)(c^2+1)(d^2+1)} +\sqrt{(c^2+1)(d^2+1)(a^2+1)} +\sqrt{(d^2+1)(a^2+1)(b^2+1)} \\ \ \\ \ge 2( ab+bc+cd+da+ac+bd)-k \end{array}\]
holds.
1996 IMC, 5
i) Let $a,b$ be real numbers such that $b\leq 0$ and $1+ax+bx^{2} \geq 0$ for every $x\in [0,1]$.
Prove that
$$\lim_{n\to \infty} n \int_{0}^{1}(1+ax+bx^{2})^{n}dx= \begin{cases}
-\frac{1}{a} &\text{if}\; a<0,\\
\infty & \text{if}\; a \geq 0.
\end{cases}$$
ii) Let $f:[0,1]\rightarrow[0,\infty)$ be a function with a continuous second derivative and let $f''(x)\leq0$ for every $x\in [0,1]$. Suppose that $L=\lim_{n\to \infty} n \int_{0}^{1}(f(x))^{n}dx$ exists and $0<L<\infty$. Prove that $f'$ has a constant sign and $\min_{x\in [0,1]}|f'(x)|=L^{-1}$.
PEN H Problems, 68
Consider the system \[x+y=z+u,\] \[2xy=zu.\] Find the greatest value of the real constant $m$ such that $m \le \frac{x}{y}$ for any positive integer solution $(x, y, z, u)$ of the system, with $x \ge y$.
2005 Romania National Olympiad, 3
Let $f:[0,\infty)\to(0,\infty)$ a continous function such that $\lim_{n\to\infty} \int^x_0 f(t)dt$ exists and it is finite. Prove that
\[ \lim_{x\to\infty} \frac 1{\sqrt x} \int^x_0 \sqrt {f(t)} dt = 0. \]
[i]Radu Miculescu[/i]
1991 Arnold's Trivium, 5
Calculate the $100$th derivative of the function
\[\frac{1}{x^2+3x+2}\]
at $x=0$ with $10\%$ relative error.
2011 Today's Calculation Of Integral, 688
For a real number $x$, let $f(x)=\int_0^{\frac{\pi}{2}} |\cos t-x\sin 2t|\ dt$.
(1) Find the minimum value of $f(x)$.
(2) Evaluate $\int_0^1 f(x)\ dx$.
[i]2011 Tokyo Institute of Technology entrance exam, Problem 2[/i]
2002 AMC 12/AHSME, 24
Find the number of ordered pairs of real numbers $ (a,b)$ such that $ (a \plus{} bi)^{2002} \equal{} a \minus{} bi$.
$ \textbf{(A)}\ 1001\qquad \textbf{(B)}\ 1002\qquad \textbf{(C)}\ 2001\qquad \textbf{(D)}\ 2002\qquad \textbf{(E)}\ 2004$
2010 China Girls Math Olympiad, 8
Determine the least odd number $a > 5$ satisfying the following conditions: There are positive integers $m_1,m_2, n_1, n_2$ such that $a=m_1^2+n_1^2$, $a^2=m_2^2+n_2^2$, and $m_1-n_1=m_2-n_2.$
2000 Brazil Team Selection Test, Problem 1
Consider a triangle $ABC$ and $I$ its incenter. The line $(AI)$ meets the circumcircle of $ABC$ in $D$. Let $E$ and $F$ be the orthogonal projections of $I$ on $(BD)$ and $(CD)$ respectively. Assume that $IE+IF=\frac{1}{2}AD$. Calculate $\angle{BAC}$.
[color=red][Moderator edited: Also discussed at http://www.mathlinks.ro/Forum/viewtopic.php?t=5088 .][/color]
2024 CMIMC Integration Bee, 15
\[\int_0^\infty 1+\cos\left(\tfrac 1{\sqrt x}\right)-2\cos\left(\tfrac 1{\sqrt {2x}}\right)\mathrm dx\]
[i]Proposed by Connor Gordon[/i]
2009 Today's Calculation Of Integral, 515
Find the maximum and minimum values of $ \int_0^{\pi} (a\sin x \plus{} b\cos x)^3dx$ for $ |a|\leq 1,\ |b|\leq 1$.
Note that you are not allowed to solve in using partial differentiation here.
2017 BMT Spring, 3
Compute $\int^9_{-9}17x^3 \cos (x^2) dx.$
2010 Today's Calculation Of Integral, 574
Let $ n$ be a positive integer. Prove that $ x^ne^{1\minus{}x}\leq n!$ for $ x\geq 0$,
2014 India National Olympiad, 4
Written on a blackboard is the polynomial $x^2+x+2014$. Calvin and Hobbes take turns alternately (starting with Calvin) in the following game. At his turn, Calvin should either increase or decrease the coefficient of $x$ by $1$. And at this turn, Hobbes should either increase or decrease the constant coefficient by $1$. Calvin wins if at any point of time the polynomial on the blackboard at that instant has integer roots. Prove that Calvin has a winning stratergy.
1967 Putnam, B6
Let $f$ be a real-valued function having partial derivatives and which is defined for $x^2 +y^2 \leq1$ and is such that $|f(x,y)|\leq 1.$ Show that there exists a point $(x_0, y_0 )$ in the interior of the unit circle such that
$$\left( \frac{ \partial f}{\partial x}(x_0 ,y_0 ) \right)^{2}+ \left( \frac{ \partial f}{\partial y}(x_0 ,y_0 ) \right)^{2} \leq 16.$$
Today's calculation of integrals, 880
For $a>2$, let $f(t)=\frac{\sin ^ 2 at+t^2}{at\sin at},\ g(t)=\frac{\sin ^ 2 at-t^2}{at\sin at}\ \left(0<|t|<\frac{\pi}{2a}\right)$ and
let $C: x^2-y^2=\frac{4}{a^2}\ \left(x\geq \frac{2}{a}\right).$ Answer the questions as follows.
(1) Show that the point $(f(t),\ g(t))$ lies on the curve $C$.
(2) Find the normal line of the curve $C$ at the point $\left(\lim_{t\rightarrow 0} f(t),\ \lim_{t\rightarrow 0} g(t)\right).$
(3) Let $V(a)$ be the volume of the solid generated by a rotation of the part enclosed by the curve $C$, the nornal line found in (2) and the $x$-axis. Express $V(a)$ in terms of $a$, then find $\lim_{a\to\infty} V(a)$.
2000 USAMO, 6
Let $a_1, b_1, a_2, b_2, \dots , a_n, b_n$ be nonnegative real numbers. Prove that
\[
\sum_{i, j = 1}^{n} \min\{a_ia_j, b_ib_j\} \le \sum_{i, j = 1}^{n} \min\{a_ib_j, a_jb_i\}.
\]
2005 Today's Calculation Of Integral, 51
A function $f(x)$ satisfies $f(x)=f\left(\frac{c}{x}\right)$ for some real number $c(>1)$ and all positive number $x$.
If $\int_1^{\sqrt{c}} \frac{f(x)}{x} dx=3$, evaluate $\int_1^c \frac{f(x)}{x} dx$
2010 Today's Calculation Of Integral, 578
Find the range of $ k$ for which the following inequality holds for $ 0\leq x\leq 1$.
\[ \int_0^x \frac {dt}{\sqrt {(3 \plus{} t^2)^3}}\geq k\int _0^x \frac {dt}{\sqrt {3 \plus{} t^2}}\]
If necessary, you may use $ \ln 3 \equal{} 1.10$.
2004 VTRMC, Problem 5
Let $f(x)=\int^x_0\sin(t^2-t+x)dt$. Compute $f''(x)+f(x)$ and deduce that $f^{(12)}(0)+f^{(10)}(0)=0$.
2010 Today's Calculation Of Integral, 557
Find the folllowing limit.
\[ \lim_{n\to\infty} \frac{(2n\plus{}1)\int_0^1 x^{n\minus{}1}\sin \left(\frac{\pi}{2}x\right)dx}{(n\plus{}1)^2\int_0^1 x^{n\minus{}1}\cos \left(\frac{\pi}{2}x\right)dx}\ \ (n\equal{}1,\ 2,\ \cdots).\]