This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2016 NIMO Problems, 3

Tags: calculus
Let $f$ be the quadratic function with leading coefficient $1$ whose graph is tangent to that of the lines $y=-5x+6$ and $y=x-1$. The sum of the coefficients of $f$ is $\tfrac pq$, where $p$ and $q$ are positive relatively prime integers. Find $100p + q$. [i]Proposed by David Altizio[/i]

1979 IMO Shortlist, 11

Given real numbers $x_1, x_2, \dots , x_n \ (n \geq 2)$, with $x_i \geq \frac 1n \ (i = 1, 2, \dots, n)$ and with $x_1^2+x_2^2+\cdots+x_n^2 = 1$ , find whether the product $P = x_1x_2x_3 \cdots x_n$ has a greatest and/or least value and if so, give these values.

2010 Today's Calculation Of Integral, 571

Evaluate $ \int_0^{\pi} \frac{x\sin ^ 3 x}{\sin ^ 2 x\plus{}8}dx$.

1999 Harvard-MIT Mathematics Tournament, 9

What fraction of the Earth's volume lies above the $45$ degrees north parallel? You may assume the Earth is a perfect sphere. The volume in question is the smaller piece that we would get if the sphere were sliced into two pieces by a plane.

2010 Danube Mathematical Olympiad, 5

Let $n\ge3$ be a positive integer. Find the real numbers $x_1\ge0,\ldots,x_n\ge 0$, with $x_1+x_2+\ldots +x_n=n$, for which the expression \[(n-1)(x_1^2+x_2^2+\ldots+x_n^2)+nx_1x_2\ldots x_n\] takes a minimal value.

2023 CMIMC Integration Bee, 10

\[\int_{\frac 1{\sqrt 3}}^{\sqrt 3} \frac{\arctan(x)\log^2(x)}{x}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2012 Hitotsubashi University Entrance Examination, 2

Let $a\geq 0$ be constant. Find the number of Intersection points of the graph of the function $y=x^3-3a^2x$ and the figure expressed by the equation $|x|+|y|=2$.

2009 Harvard-MIT Mathematics Tournament, 10

Let $a$ and $b$ be real numbers satisfying $a>b>0$. Evaluate \[\int_0^{2\pi}\dfrac{1}{a+b\cos(\theta)}d\theta.\] Express your answer in terms of $a$ and $b$.

2011 VTRMC, Problem 1

Evaluate $\int^4_1\frac{x-2}{(x^2+4)\sqrt x}dx$

1983 IMO Longlists, 12

The number $0$ or $1$ is to be assigned to each of the $n$ vertices of a regular polygon. In how many different ways can this be done (if we consider two assignments that can be obtained one from the other through rotation in the plane of the polygon to be identical)?

2016 ISI Entrance Examination, 7

$f$ is a differentiable function such that $f(f(x))=x$ where $x \in [0,1]$.Also $f(0)=1$.Find the value of $$\int_0^1(x-f(x))^{2016}dx$$

2010 Today's Calculation Of Integral, 613

Find the area of the part, in the $x$-$y$ plane, enclosed by the curve $|ye^{2x}-6e^{x}-8|=-(e^{x}-2)(e^{x}-4).$ [i]2010 Tokyo University of Agriculture and Technology entrance exam[/i]

2023 CMIMC Integration Bee, 3

\[\int_0^{\frac \pi 4} \cot(x)\sqrt{\sin(x)}\,\mathrm dx\] [i]Proposed by Connor Gordon[/i]

2014 SEEMOUS, Problem 4

a) Prove that $\lim_{n\to\infty}n\int^n_0\frac{\operatorname{arctan}\frac xn}{x(x^2+1)}dx=\frac\pi2$. b) Find the limit $\lim_{n\to\infty}n\left(m\int^n_0\frac{\operatorname{arctan}\frac xn}{x(x^2+1)}dx-\frac\pi2\right)$.

2006 AMC 12/AHSME, 12

The parabola $ y \equal{} ax^2 \plus{} bx \plus{} c$ has vertex $ (p,p)$ and $ y$-intercept $ (0, \minus{} p)$, where $ p\neq 0$. What is $ b$? $ \textbf{(A) } \minus{} p \qquad \textbf{(B) } 0 \qquad \textbf{(C) } 2 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } p$

1995 AIME Problems, 11

A right rectangular prism $P$ (i.e., a rectangular parallelpiped) has sides of integral length $a, b, c,$ with $a\le b\le c.$ A plane parallel to one of the faces of $P$ cuts $P$ into two prisms, one of which is similar to $P,$ and both of which have nonzero volume. Given that $b=1995,$ for how many ordered triples $(a, b, c)$ does such a plane exist?

2011 Today's Calculation Of Integral, 682

On the $x$-$y$ plane, 3 half-lines $y=0,\ (x\geq 0),\ y=x\tan \theta \ (x\geq 0),\ y=-\sqrt{3}x\ (x\leq 0)$ intersect with the circle with the center the origin $O$, radius $r\geq 1$ at $A,\ B,\ C$ respectively. Note that $\frac{\pi}{6}\leq \theta \leq \frac{\pi}{3}$. If the area of quadrilateral $OABC$ is one third of the area of the regular hexagon which inscribed in a circle with radius 1, then evaluate $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} r^2d\theta .$ [i]2011 Waseda University of Education entrance exam/Science[/i]

2013 Today's Calculation Of Integral, 898

Let $a,\ b$ be positive constants. Evaluate \[\int_0^1 \frac{\ln \frac{(x+a)^{x+a}}{(x+b)^{x+b}}}{(x+a)(x+b)\ln (x+a)\ln (x+b)}\ dx.\]

2019 Jozsef Wildt International Math Competition, W. 16

If $f : [a, b] \to (0,\infty)$; $0 < a \leq b$; $f$ derivable; $f'$ continuous then:$$\int \limits_{a}^{b}\frac{f'(x)\sqrt{f(x)}}{f^3(x) + 1}\leq \tan^{-1}\left(\frac{f(b)-f(a)}{1 + f(a)f(b)}\right)$$

2010 Today's Calculation Of Integral, 636

Let $a>1$ be a constant. In the $xy$-plane, let $A(a,\ 0),\ B(a,\ \ln a)$ and $C$ be the intersection point of the curve $y=\ln x$ and the $x$-axis. Denote by $S_1$ the area of the part bounded by the $x$-axis, the segment $BA$ and the curve $y=\ln x$ (1) For $1\leq b\leq a$, let $D(b,\ \ln b)$. Find the value of $b$ such that the area of quadrilateral $ABDC$ is the closest to $S_1$ and find the area $S_2$. (2) Find $\lim_{a\rightarrow \infty} \frac{S_2}{S_1}$. [i]1992 Tokyo University entrance exam/Science[/i]

2013 Bogdan Stan, 2

Let be a sequence of continuous functions $ \left( f_n \right)_{n\ge 1} :[0,1]\longrightarrow\mathbb{R} $ satisfying the following properties: $ \text{a) } $ for any natural $ n $ and $ x\in [1/n,1] ,$ it follows $ \left| f_n(x) \right|\leqslant 1/n. $ $ \text{b) } $ for any natural $ n, $ it follows $ \int_0^1 f_n^2(t)dt\leqslant 1. $ Then, $\lim_{n\to 0} \int_0^1\left| f_n(t) \right| dt=0 $ [i]Cristinel Mortici[/i]

2014 Contests, 901

Given the polynomials $P(x)=px^4+qx^3+rx^2+sx+t,\ Q(x)=\frac{d}{dx}P(x)$, find the real numbers $p,\ q,\ r,\ s,\ t$ such that $P(\sqrt{-5})=0,\ Q(\sqrt{-2})=0$ and $\int_0^1 P(x)dx=-\frac{52}{5}.$

2009 Today's Calculation Of Integral, 444

Evaluate $ \int_0^{\frac {\pi}{6}} \frac {\sin x \plus{} \cos x}{1 \minus{} \sin 2x}\ln\ (2 \plus{} \sin 2x)\ dx.$

PEN S Problems, 19

Determine all pairs $(a, b)$ of real numbers such that $a\lfloor bn\rfloor =b\lfloor an\rfloor$ for all positive integer $n$.

2015 Postal Coaching, Problem 1

Find all positive integer $n$ such that $$\frac{\sin{n\theta}}{\sin{\theta}} - \frac{\cos{n\theta}}{\cos{\theta}} = n-1$$ holds for all $\theta$ which are not integral multiples of $\frac{\pi}{2}$