This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2005 Today's Calculation Of Integral, 90

Find $\lim_{n\to\infty} \left(\frac{_{3n}C_n}{_{2n}C_n}\right)^{\frac{1}{n}}$ where $_iC_j$ is a binominal coefficient which means $\frac{i\cdot (i-1)\cdots(i-j+1)}{j\cdot (j-1)\cdots 2\cdot 1}$.

1983 USAMO, 2

Prove that the roots of\[x^5 + ax^4 + bx^3 + cx^2 + dx + e = 0\] cannot all be real if $2a^2 < 5b$.

1973 Poland - Second Round, 3

Tags: limit , algebra , calculus
Let $ f:\mathbb{R} \to \mathbb{R} $ be an increasing function satisfying the following conditions: 1. $ f(x+1) = f(x) + 1 $ for each $ x \in \mathbb{R} $, 2. there exists an integer p such that $ f(f(f(O))) = p $. Prove that for every real number $ x $ $$ \lim_{n\to \infty} \frac{x_n}{n} = \frac{p}{3}.$$ where $ x_1 = x $ and $ x_n =f(x_{n-1}) $ for $ n = 2, 3, \ldots $.

PEN G Problems, 23

Let $f(x)=\prod_{n=1}^{\infty} \left( 1 + \frac{x}{2^n} \right)$. Show that at the point $x=1$, $f(x)$ and all its derivatives are irrational.

2010 Today's Calculation Of Integral, 620

Let $a,\ b$ be real numbers. Suppose that a function $f(x)$ satisfies $f(x)=a\sin x+b\cos x+\int_{-\pi}^{\pi} f(t)\cos t\ dt$ and has the maximum value $2\pi$ for $-\pi \leq x\leq \pi$. Find the minimum value of $\int_{-\pi}^{\pi} \{f(x)\}^2dx.$ [i]2010 Chiba University entrance exam[/i]

2008 AIME Problems, 12

On a long straight stretch of one-way single-lane highway, cars all travel at the same speed and all obey the safety rule: the distance from the back of the car ahead to the front of the car behind is exactly one car length for each 15 kilometers per hour of speed or fraction thereof (Thus the front of a car traveling 52 kilometers per hour will be four car lengths behind the back of the car in front of it.) A photoelectric eye by the side of the road counts the number of cars that pass in one hour. Assuming that each car is 4 meters long and that the cars can travel at any speed, let $ M$ be the maximum whole number of cars that can pass the photoelectric eye in one hour. Find the quotient when $ M$ is divided by 10.

2003 Vietnam Team Selection Test, 3

Let $f(0, 0) = 5^{2003}, f(0, n) = 0$ for every integer $n \neq 0$ and \[\begin{array}{c}\ f(m, n) = f(m-1, n) - 2 \cdot \Bigg\lfloor \frac{f(m-1, n)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n-1)}{2}\Bigg\rfloor + \Bigg\lfloor\frac{f(m-1, n+1)}{2}\Bigg\rfloor \end{array}\] for every natural number $m > 0$ and for every integer $n$. Prove that there exists a positive integer $M$ such that $f(M, n) = 1$ for all integers $n$ such that $|n| \leq \frac{(5^{2003}-1)}{2}$ and $f(M, n) = 0$ for all integers n such that $|n| > \frac{5^{2003}-1}{2}.$

2002 District Olympiad, 4

Let be a continuous and periodic function $ f:\mathbb{R}\longrightarrow [0,\infty ) $ of period $ 1. $ Show: [b]a)[/b] $ a\in\mathbb{R}\implies\int_a^{a+1} f(x)dx =\int_0^1 f(x) dx . $ [b]b)[/b] $ \lim_{n\to\infty} \int_0^1 f(x)f(nx) dx=\left( \int_0^1 f(x) dx \right)^2 . $ [i]C. Mortici[/i]

2004 Unirea, 4

Let be the sequence $ \left( I_n \right)_{n\ge 1} $ defined as $ I_n=\int_0^{\pi } \frac{dx}{x+\sin^n x +\cos^n x} . $ [b]a)[/b] Study the monotony of $ \left( I_n \right)_{n\ge 1} . $ [b]b)[/b] Calculate the limit of $ \left( I_n \right)_{n\ge 1} . $

1990 National High School Mathematics League, 10

Define $f(n):$ the number of integral points of line segment $OA_n$ ($O$ and $A_n$ not included), where $A_n(n,n+3)$. Then, $f(1)+f(2)+\cdots+f(1990)=$________.

2011 Today's Calculation Of Integral, 740

Let $r$ be a positive constant. If 2 curves $C_1: y=\frac{2x^2}{x^2+1},\ C_2: y=\sqrt{r^2-x^2}$ have each tangent line at their point of intersection and at which their tangent lines are perpendicular each other, then find the area of the figure bounded by $C_1,\ C_2$.

2009 Today's Calculation Of Integral, 475

For a positive constant number $ t$, let denote $ D$ the region surrounded by the curve $ y \equal{} e^{x}$, the line $ x \equal{} t$, the $ x$ axis and the $ y$ axis. Let $ V_x,\ V_y$ be the volumes of the solid obtained by rotating $ D$ about the $ x$ axis and the $ y$ axis respectively. Compare the size of $ V_x,\ V_y.$

2009 Today's Calculation Of Integral, 489

Find the following limit. $ \lim_{n\to\infty} \int_{\minus{}1}^1 |x|\left(1\plus{}x\plus{}\frac{x^2}{2}\plus{}\frac{x^3}{3}\plus{}\cdots \plus{}\frac{x^{2n}}{2n}\right)\ dx$.

2024 CMIMC Integration Bee, 8

\[\int_1^2 \cos(\sin^{-1}(\tan(\cos^{-1}(\sin(\tan^{-1}(x))))))\mathrm dx\] [i]Proposed by Robert Trosten[/i]

2017 Romania National Olympiad, 4

Let be a function $ f $ of class $ \mathcal{C}^1[a,b] $ whose derivative is positive. Prove that there exists a real number $ c\in (a,b) $ such that $$ f(f(b))-f(f(a))=(f'(c))^2(b-a) . $$

1991 Arnold's Trivium, 81

Find the Green's function of the operator $d^2/dx^2-1$ and solve the equation \[\int_{-\infty}^{+\infty}e^{-|x-y|}u(y)dy=e^{-x^2}\]

2009 Today's Calculation Of Integral, 451

Find $ \lim_{n\to\infty} \sum_{k\equal{}1}^n \ln \left(1\plus{}\frac{k^a}{n^{a\plus{}1}}\right).$

2014 Contests, 2

The roots of the equation \[ x^3-3ax^2+bx+18c=0 \] form a non-constant arithmetic progression and the roots of the equation \[ x^3+bx^2+x-c^3=0 \] form a non-constant geometric progression. Given that $a,b,c$ are real numbers, find all positive integral values $a$ and $b$.

1962 Vietnam National Olympiad, 2

Let $ f(x) \equal{} (1 \plus{} x)\cdot\sqrt{(2 \plus{} x^2)}\cdot\sqrt[3]{(3 \plus{} x^3)}$. Determine $ f'(1)$.

2000 District Olympiad (Hunedoara), 4

Let $ f:[0,1]\longrightarrow\mathbb{R}_+^* $ be a Riemann-integrable function. Calculate $ \lim_{n\to\infty}\left(-n+\sum_{i=1}^ne^{\frac{1}{n}\cdot f\left(\frac{i}{n}\right)}\right) . $

1995 National High School Mathematics League, 10

The number of integral points satisfy $\begin{cases} y\leq 3x\\ y\geq \frac{x}{3}\\ x+y\geq100 \end{cases}$ on the coordinate plane is________.

2005 Today's Calculation Of Integral, 30

A sequence $\{a_n\}$ is defined by $a_n=\int_0^1 x^3(1-x)^n dx\ (n=1,2,3.\cdots)$ Find the constant number $c$ such that $\sum_{n=1}^{\infty} (n+c)(a_n-a_{n+1})=\frac{1}{3}$

1960 AMC 12/AHSME, 24

If $\log_{2x}216 = x$, where $x$ is real, then $x$ is: $ \textbf{(A)}\ \text{A non-square, non-cube integer} \qquad$ $\textbf{(B)}\ \text{A non-square, non-cube, non-integral rational number} \qquad$ $\textbf{(C)}\ \text{An irrational number} \qquad$ $\textbf{(D)}\ \text{A perfect square}\qquad$ $\textbf{(E)}\ \text{A perfect cube} $

2004 China Team Selection Test, 3

Given arbitrary positive integer $ a$ larger than $ 1$, show that for any positive integer $ n$, there always exists a n-degree integral coefficient polynomial $ p(x)$, such that $ p(0)$, $ p(1)$, $ \cdots$, $ p(n)$ are pairwise distinct positive integers, and all have the form of $ 2a^k\plus{}3$, where $ k$ is also an integer.

2010 Today's Calculation Of Integral, 648

Consider a function real-valued function with $C^{\infty}$-class on $\mathbb{R}$ such that: (a) $f(0)=\frac{df}{dx}(0)=0,\ \frac{d^2f}{dx^2}(0)\neq 0.$ (b) For $x\neq 0,\ f(x)>0.$ Judge whether the following integrals $(i),\ (ii)$ converge or diverge, justify your answer. $(i)$ \[\int\int_{|x_1|^2+|x_2|^2\leq 1} \frac{dx_1dx_2}{f(x_1)+f(x_2)}.\] $(ii)$ \[\int\int_{|x_1|^2+|x_2|^2+|x_3|^2\leq 1} \frac{dx_1dx_2dx_3}{f(x_1)+f(x_2)+f(x_3)}.\] [i]2010 Kyoto University, Master Course in Mathematics[/i]