This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2009 Harvard-MIT Mathematics Tournament, 2

The differentiable function $F:\mathbb{R}\to\mathbb{R}$ satisfies $F(0)=-1$ and \[\dfrac{d}{dx}F(x)=\sin (\sin (\sin (\sin(x))))\cdot \cos( \sin (\sin (x))) \cdot \cos (\sin(x))\cdot\cos(x).\] Find $F(x)$ as a function of $x$.

2006 IMO Shortlist, 3

We define a sequence $ \left(a_{1},a_{2},a_{3},\ldots \right)$ by \[ a_{n} \equal{} \frac {1}{n}\left(\left\lfloor\frac {n}{1}\right\rfloor \plus{} \left\lfloor\frac {n}{2}\right\rfloor \plus{} \cdots \plus{} \left\lfloor\frac {n}{n}\right\rfloor\right), \] where $\lfloor x\rfloor$ denotes the integer part of $x$. [b]a)[/b] Prove that $a_{n+1}>a_n$ infinitely often. [b]b)[/b] Prove that $a_{n+1}<a_n$ infinitely often. [i]Proposed by Johan Meyer, South Africa[/i]

2014 Indonesia MO, 4

Determine all polynomials with integral coefficients $P(x)$ such that if $a,b,c$ are the sides of a right-angled triangle, then $P(a), P(b), P(c)$ are also the sides of a right-angled triangle. (Sides of a triangle are necessarily positive. Note that it's not necessary for the order of sides to be preserved; if $c$ is the hypotenuse of the first triangle, it's not necessary that $P(c)$ is the hypotenuse of the second triangle, and similar with the others.)

2006 Romania Team Selection Test, 4

Let $a,b,c$ be positive real numbers such that $a+b+c=3$. Prove that: \[ \frac 1{a^2}+\frac 1{b^2}+\frac 1{c^2} \geq a^2+b^2+c^2. \]

2009 Today's Calculation Of Integral, 495

Evaluate the following definite integrals. (1) $ \int_0^{\frac {1}{2}} \frac {x^2}{\sqrt {1 \minus{} x^2}}\ dx$ (2) $ \int_0^1 \frac {1 \minus{} x}{(1 \plus{} x^2)^2}\ dx$ (3) $ \int_{ \minus{} 1}^7 \frac {dx}{1 \plus{} \sqrt [3]{1 \plus{} x}}$

2003 Moldova National Olympiad, 12.2

For every natural number $n\geq{2}$ consider the following affirmation $P_n$: "Consider a polynomial $P(X)$ (of degree $n$) with real coefficients. If its derivative $P'(X)$ has $n-1$ distinct real roots, then there is a real number $C$ such that the equation $P(x)=C$ has $n$ real,distinct roots." Are $P_4$ and $P_5$ both true? Justify your answer.

PEN G Problems, 27

Let $1<a_{1}<a_{2}<\cdots$ be a sequence of positive integers. Show that \[\frac{2^{a_{1}}}{{a_{1}}!}+\frac{2^{a_{2}}}{{a_{2}}!}+\frac{2^{a_{3}}}{{a_{3}}!}+\cdots\] is irrational.

2012 Today's Calculation Of Integral, 821

Prove that : $\ln \frac{11}{27}<\int_{\frac 14}^{\frac 34} \frac{1}{\ln (1-x)}\ dx<\ln \frac{7}{15}.$

1994 IMC, 5

a) Let $f\in C[0,b]$, $g\in C(\mathbb R)$ and let $g$ be periodic with period $b$. Prove that $\int_0^b f(x) g(nx)\,\mathrm dx$ has a limit as $n\to\infty$ and $$\lim_{n\to\infty}\int_0^b f(x)g(nx)\,\mathrm dx=\frac 1b \int_0^b f(x)\,\mathrm dx\cdot\int_0^b g(x)\,\mathrm dx$$ b) Find $$\lim_{n\to\infty}\int_0^\pi \frac{\sin x}{1+3\cos^2nx}\,\mathrm dx$$

2014 Contests, 900

Find $\sum_{k=0}^n \frac{(-1)^k}{2k+1}\ _n C_k.$

2024 IMC, 6

Tags: function , calculus
Prove that for any function $f:\mathbb{Q} \to \mathbb{Z}$, there exist $a,b,c \in \mathbb{Q}$ such that $a<b<c$, $f(b) \ge f(a)$ and $f(b) \ge f(c)$.

1962 Miklós Schweitzer, 5

Let $ f$ be a finite real function of one variable. Let $ \overline{D}f$ and $ \underline{D}f$ be its upper and lower derivatives, respectively, that is, \[ \overline{D}f\equal{}\limsup_{{h,k\rightarrow 0}_{{h,k \geq 0}_{h\plus{}k>0}}} \frac{f(x\plus{}h)\minus{}f(x\minus{}k)}{h\plus{}k}\] , \[ \underline{D}f\equal{}\liminf_{{h,k\rightarrow 0}_{{h,k \geq 0}_{h\plus{}k>0}}} \frac{f(x\plus{}h)\minus{}f(x\minus{}k)}{h\plus{}k}.\] Show that $ \overline{D}f$ and $ \underline{D}f$ are Borel-measurable functions. [A. Csaszar]

1989 IMO Longlists, 76

Poldavia is a strange kingdom. Its currency unit is the bourbaki and there exist only two types of coins: gold ones and silver ones. Each gold coin is worth $ n$ bourbakis and each silver coin is worth $ m$ bourbakis ($ n$ and $ m$ are positive integers). Using gold and silver coins, it is possible to obtain sums such as 10000 bourbakis, 1875 bourbakis, 3072 bourbakis, and so on. But Poldavia’s monetary system is not as strange as it seems: [b](a)[/b] Prove that it is possible to buy anything that costs an integral number of bourbakis, as long as one can receive change. [b](b)[/b] Prove that any payment above $ mn\minus{}2$ bourbakis can be made without the need to receive change.

2006 China Girls Math Olympiad, 5

The set $S = \{ (a,b) \mid 1 \leq a, b \leq 5, a,b \in \mathbb{Z}\}$ be a set of points in the plane with integeral coordinates. $T$ is another set of points with integeral coordinates in the plane. If for any point $P \in S$, there is always another point $Q \in T$, $P \neq Q$, such that there is no other integeral points on segment $PQ$. Find the least value of the number of elements of $T$.

1999 Estonia National Olympiad, 2

Find the value of the integral $\int_{-1}^{1} ln \left(x +\sqrt{1 + x^2}\right) dx$.

1969 IMO Longlists, 51

$(NET 6)$ A curve determined by $y =\sqrt{x^2 - 10x+ 52}, 0\le x \le 100,$ is constructed in a rectangular grid. Determine the number of squares cut by the curve.

2010 N.N. Mihăileanu Individual, 2

Let be a continuous function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the property that there exists a continuous and bounded function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that verifies the equality $$ f(x)=\int_0^x f(\xi )g(\xi )d\xi , $$ for any real number $ x. $ Prove that $ f=0. $ [i]Nelu Chichirim[/i]

2007 Today's Calculation Of Integral, 175

Evaluate $\sum_{n=0}^{\infty}\frac{1}{(2n+1)2^{2n+1}}.$

2011 AMC 12/AHSME, 7

A majority of the $30$ students in Ms. Demeanor's class bought pencils at the school bookstore. Each of these students bought the same number of pencils, and this number was greater than $1$. The cost of a pencil in cents was greater than the number of pencils each student bought, and the total cost of all the pencils was $\$17.71$. What was the cost of a pencil in cents? $ \textbf{(A)}\ 7 \qquad \textbf{(B)}\ 11 \qquad \textbf{(C)}\ 17 \qquad \textbf{(D)}\ 23 \qquad \textbf{(E)}\ 77 $

2012 Today's Calculation Of Integral, 802

Let $k$ and $a$ are positive constants. Denote by $V_1$ the volume of the solid generated by a rotation of the figure enclosed by the curve $C: y=\frac{x}{x+k}\ (x\geq 0)$, the line $x=a$ and the $x$-axis around the $x$-axis, and denote by $V_2$ that of the solid by a rotation of the figure enclosed by the curve $C$, the line $y=\frac{a}{a+k}$ and the $y$-axis around the $y$-axis. Find the ratio $\frac{V_2}{V_1}.$

2013 Today's Calculation Of Integral, 888

In the coordinate plane, given a circle $K: x^2+y^2=1,\ C: y=x^2-2$. Let $l$ be the tangent line of $K$ at $P(\cos \theta,\ \sin \theta)\ (\pi<\theta <2\pi).$ Find the minimum area of the part enclosed by $l$ and $C$.

1979 USAMO, 1

Determine all non-negative integral solutions $ (n_{1},n_{2},\dots , n_{14}) $ if any, apart from permutations, of the Diophantine Equation \[n_{1}^{4}+n_{2}^{4}+\cdots+n_{14}^{4}=1,599.\]

2012 Today's Calculation Of Integral, 837

Let $f_n(x)=\sum_{k=1}^n (-1)^{k+1} \left(\frac{x^{2k-1}}{2k-1}+\frac{x^{2k}}{2k}\right).$ Find $\lim_{n\to\infty} f_n(1).$

2013 Today's Calculation Of Integral, 862

Draw a tangent with positive slope to a parabola $y=x^2+1$. Find the $x$-coordinate such that the area of the figure bounded by the parabola, the tangent and the coordinate axisis is $\frac{11}{3}.$

1994 China Team Selection Test, 2

Given distinct prime numbers $p$ and $q$ and a natural number $n \geq 3$, find all $a \in \mathbb{Z}$ such that the polynomial $f(x) = x^n + ax^{n-1} + pq$ can be factored into 2 integral polynomials of degree at least 1.