Found problems: 2215
2012 NIMO Problems, 6
A square is called [i]proper[/i] if its sides are parallel to the coordinate axes. Point $P$ is randomly selected inside a proper square $S$ with side length 2012. Denote by $T$ the largest proper square that lies within $S$ and has $P$ on its perimeter, and denote by $a$ the expected value of the side length of $T$. Compute $\lfloor a \rfloor$, the greatest integer less than or equal to $a$.
[i]Proposed by Lewis Chen[/i]
2007 ITAMO, 6
a) For each $n \ge 2$, find the maximum constant $c_{n}$ such that
$\frac 1{a_{1}+1}+\frac 1{a_{2}+1}+\ldots+\frac 1{a_{n}+1}\ge c_{n}$
for all positive reals $a_{1},a_{2},\ldots,a_{n}$ such that $a_{1}a_{2}\cdots a_{n}= 1$.
b) For each $n \ge 2$, find the maximum constant $d_{n}$ such that
$\frac 1{2a_{1}+1}+\frac 1{2a_{2}+1}+\ldots+\frac 1{2a_{n}+1}\ge d_{n}$
for all positive reals $a_{1},a_{2},\ldots,a_{n}$ such that $a_{1}a_{2}\cdots a_{n}= 1$.
2008 Moldova MO 11-12, 6
Find $ \lim_{n\to\infty}a_n$ where $ (a_n)_{n\ge1}$ is defined by $ a_n\equal{}\frac1{\sqrt{n^2\plus{}8n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}16n\minus{}1}}\plus{}\frac1{\sqrt{n^2\plus{}24n\minus{}1}}\plus{}\ldots\plus{}\frac1{\sqrt{9n^2\minus{}1}}$.
2007 Moldova National Olympiad, 11.2
Define $a_{n}$ as satisfying: $\left(1+\frac{1}{n}\right)^{n+a_{n}}=e$.
Find $\lim_{n\rightarrow\infty}a_{n}$.
1969 AMC 12/AHSME, 27
A particle moves so that its speed for the second and subsequent miles varies inversely as the integral number of miles already traveled. For each subsequent mile the speed is constant. If the second mile is traversed in $2$ hours, then the time, in hours, needed to traverse the $n$th mile is:
$\textbf{(A) }\dfrac2{n-1}\qquad
\textbf{(B) }\dfrac{n-1}2\qquad
\textbf{(C) }\dfrac2n\qquad
\textbf{(D) }2n\qquad
\textbf{(E) }2(n-1)$
2010 Today's Calculation Of Integral, 630
Evaluate $\int_0^{\infty} \frac{\ln (1+e^{4x})}{e^x}dx.$
2004 Romania National Olympiad, 3
Let $f : \left[ 0,1 \right] \to \mathbb R$ be an integrable function such that \[ \int_0^1 f(x) \, dx = \int_0^1 x f(x) \, dx = 1 . \] Prove that \[ \int_0^1 f^2 (x) \, dx \geq 4 . \]
[i]Ion Rasa[/i]
2009 Today's Calculation Of Integral, 402
Consider a right circular cylinder with radius $ r$ of the base, hight $ h$. Find the volume of the solid by revolving the cylinder about a diameter of the base.
2018 Moscow Mathematical Olympiad, 1
The graphs of a square trinomial and its derivative divide the coordinate plane into four parts. How many roots does this
square trinomial has?
2012 Today's Calculation Of Integral, 832
Find the limit
\[\lim_{n\to\infty} \frac{1}{n\ln n}\int_{\pi}^{(n+1)\pi} (\sin ^ 2 t)(\ln t)\ dt.\]
2012 Today's Calculation Of Integral, 836
Evaluate $\int_0^{\pi} e^{\sin x}\cos ^ 2(\sin x )\cos x\ dx$.
2005 Today's Calculation Of Integral, 86
Prove
\[\left[\int_\pi^\infty \frac{\cos x}{x}\ dx\right]^2< \frac{1}{{\pi}^2}\]
1995 Miklós Schweitzer, 2
Given $f,g\in L^1[0,1]$ and $\int_0^1 f = \int_0^1 g=1$, prove that there exists an interval I st $\int_I f = \int_I g=\frac12$.
2010 Contests, 1
Let $P$ be a polynomial with integer coefficients such that $P(0)=0$ and
\[\gcd(P(0), P(1), P(2), \ldots ) = 1.\]
Show there are infinitely many $n$ such that
\[\gcd(P(n)- P(0), P(n+1)-P(1), P(n+2)-P(2), \ldots) = n.\]
2005 Today's Calculation Of Integral, 55
Evaluate
\[\lim_{n\to\infty} n\int_0^1 (1+x)^{-n-1}e^{x^2}\ dx\ \ ( n=1,2,\cdots)\]
2011 Today's Calculation Of Integral, 696
Let $P(x),\ Q(x)$ be polynomials such that :
\[\int_0^2 \{P(x)\}^2dx=14,\ \int_0^2 P(x)dx=4,\ \int_0^2 \{Q(x)\}^2dx=26,\ \int_0^2 Q(x)dx=2.\]
Find the maximum and the minimum value of $\int_0^2 P(x)Q(x)dx$.
2012 Today's Calculation Of Integral, 834
Find the maximum and minimum areas of the region enclosed by the curve $y=|x|e^{|x|}$ and the line $y=a\ (0\leq a\leq e)$ at $[-1,\ 1]$.
2003 AMC 12-AHSME, 15
A semicircle of diameter $ 1$ sits at the top of a semicircle of diameter $ 2$, as shown. The shaded area inside the smaller semicircle and outside the larger semicircle is called a lune. Determine the area of this lune.
[asy]unitsize(2.5cm);
defaultpen(fontsize(10pt)+linewidth(.8pt));
filldraw(Circle((0,.866),.5),grey,black);
label("1",(0,.866),S);
filldraw(Circle((0,0),1),white,black);
draw((-.5,.866)--(.5,.866),linetype("4 4"));
clip((-1,0)--(1,0)--(1,2)--(-1,2)--cycle);
draw((-1,0)--(1,0));
label("2",(0,0),S);[/asy]$ \textbf{(A)}\ \frac {1}{6}\pi \minus{} \frac {\sqrt {3}}{4} \qquad \textbf{(B)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{12}\pi \qquad \textbf{(C)}\ \frac {\sqrt {3}}{4} \minus{} \frac {1}{24}\pi\qquad\textbf{(D)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{24}\pi$
$ \textbf{(E)}\ \frac {\sqrt {3}}{4} \plus{} \frac {1}{12}\pi$
2005 Today's Calculation Of Integral, 26
Evaluate
\[{{\int_{e^{e^{e}}}^{e^{e^{e^{e}}}}} \frac{dx}{x\ln x\cdot \ln (\ln x)\cdot \ln \{\ln (\ln x)\}}}\]
1986 IMO Longlists, 25
Let real numbers $x_1, x_2, \cdots , x_n$ satisfy $0 < x_1 < x_2 < \cdots< x_n < 1$ and set $x_0 = 0, x_{n+1} = 1$. Suppose that these numbers satisfy the following system of equations:
\[\sum_{j=0, j \neq i}^{n+1} \frac{1}{x_i-x_j}=0 \quad \text{where } i = 1, 2, . . ., n.\]
Prove that $x_{n+1-i} = 1- x_i$ for $i = 1, 2, . . . , n.$
1989 APMO, 5
Determine all functions $f$ from the reals to the reals for which
(1) $f(x)$ is strictly increasing and (2) $f(x) + g(x) = 2x$ for all real $x$,
where $g(x)$ is the composition inverse function to $f(x)$. (Note: $f$ and $g$ are said to be composition inverses if $f(g(x)) = x$ and $g(f(x)) = x$ for all real $x$.)
2020 Jozsef Wildt International Math Competition, W32
Compute the quadruple integral
$$A=\frac1{\pi^2}\int_{[0,1]^2\times[-\pi,\pi]^2}ab\sqrt{a^2+b^2-2ab\cos(x-y)}dadbdxdy$$
[i]Proposed by Moubinool Omarjee[/i]
2002 Tournament Of Towns, 1
In a triangle $ABC$ it is given $\tan A,\tan B,\tan C$ are integers. Find their values.
2009 Harvard-MIT Mathematics Tournament, 5
Compute \[\lim_{h\to 0}\dfrac{\sin(\frac{\pi}{3}+4h)-4\sin(\frac{\pi}{3}+3h)+6\sin(\frac{\pi}{3}+2h)-4\sin(\frac{\pi}{3}+h)+\sin(\frac{\pi}{3})}{h^4}.\]
2012 Putnam, 5
Prove that, for any two bounded functions $g_1,g_2 : \mathbb{R}\to[1,\infty),$ there exist functions $h_1,h_2 : \mathbb{R}\to\mathbb{R}$ such that for every $x\in\mathbb{R},$\[\sup_{s\in\mathbb{R}}\left(g_1(s)^xg_2(s)\right)=\max_{t\in\mathbb{R}}\left(xh_1(t)+h_2(t)\right).\]