This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2215

2005 Today's Calculation Of Integral, 79

Find the area of the domain expressed by the following system inequalities. \[x\geq 0,\ y\geq 0,\ x^{\frac{1}{p}}+y^{\frac{1}{p}} \leq 1\ (p=1,2,\cdots)\]

2009 Harvard-MIT Mathematics Tournament, 4

Let $P$ be a fourth degree polynomial, with derivative $P^\prime$, such that $P(1)=P(3)=P(5)=P^\prime (7)=0$. Find the real number $x\neq 1,3,5$ such that $P(x)=0$.

2005 Today's Calculation Of Integral, 11

Calculate the following indefinite integrals. [1] $\int \frac{6x+1}{\sqrt{3x^2+x+4}}dx$ [2] $\int \frac{e^x}{e^x+e^{a-x}}dx$ [3] $\int \frac{(\sqrt{x}+1)^3}{\sqrt{x}}dx$ [4] $\int x\ln (x^2-1)dx$ [5] $\int \frac{2(x+2)}{x^2+4x+1}dx$

2011 Today's Calculation Of Integral, 710

Evaluate $\int_0^{\frac{\pi}{4}} \frac{\sin \theta (\sin \theta \cos \theta +2)}{\cos ^ 4 \theta}\ d\theta$.

VI Soros Olympiad 1999 - 2000 (Russia), 11.2

Let $$f(x) = (...((x - 2)^2 - 2)^2 - 2)^2... - 2)^2$$ (here there are $n$ brackets $( )$). Find $f''(0)$

2010 Iran MO (3rd Round), 4

For each polynomial $p(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ we define it's derivative as this and we show it by $p'(x)$: \[p'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+2a_2x+a_1\] a) For each two polynomials $p(x)$ and $q(x)$ prove that:(3 points) \[(p(x)q(x))'=p'(x)q(x)+p(x)q'(x)\] b) Suppose that $p(x)$ is a polynomial with degree $n$ and $x_1,x_2,...,x_n$ are it's zeros. prove that:(3 points) \[\frac{p'(x)}{p(x)}=\sum_{i=1}^{n}\frac{1}{x-x_i}\] c) $p(x)$ is a monic polynomial with degree $n$ and $z_1,z_2,...,z_n$ are it's zeros such that: \[|z_1|=1, \quad \forall i\in\{2,..,n\}:|z_i|\le1\] Prove that $p'(x)$ has at least one zero in the disc with length one with the center $z_1$ in complex plane. (disc with length one with the center $z_1$ in complex plane: $D=\{z \in \mathbb C: |z-z_1|\le1\}$)(20 points)

2010 Today's Calculation Of Integral, 569

In the coordinate plane, denote by $ S(a)$ the area of the region bounded by the line passing through the point $ (1,\ 2)$ with the slope $ a$ and the parabola $ y\equal{}x^2$. When $ a$ varies in the range of $ 0\leq a\leq 6$, find the value of $ a$ such that $ S(a)$ is minimized.

2019 Jozsef Wildt International Math Competition, W. 56

Let $f$, $g$, $h : [a, b] \to \mathbb{R}$, three integrable functions such that:$$\int \limits_a^b fgdx=\int \limits_a^bghdx=\int \limits_a^bhfdx=\int \limits_a^bg^2dx\int \limits_a^bh^2dx=1$$Then$$\int \limits_a^bg^2dx=\int \limits_a^bh^2dx=1$$

1988 IMO Longlists, 13

Tags: calculus , geometry
Let $T$ be a triangle with inscribed circle $C.$ A square with sides of length $a$ is circumscribed about the same circle $C.$ Show that the total length of the parts of the edge of the square interior to the triangle $T$ is at least $2 \cdot a.$

2012 Kyoto University Entry Examination, 1

Answer the following questions: (1) Let $a$ be positive real number. Find $\lim_{n\to\infty} (1+a^{n})^{\frac{1}{n}}.$ (2) Evaluate $\int_1^{\sqrt{3}} \frac{1}{x^2}\ln \sqrt{1+x^2}dx.$ 35 points

2007 Today's Calculation Of Integral, 245

A sextic funtion $ y \equal{} ax^6 \plus{} bx^5 \plus{} cx^4 \plus{} dx^3 \plus{} ex^2 \plus{} fx \plus{} g\ (a\neq 0)$ touches the line $ y \equal{} px \plus{} q$ at $ x \equal{} \alpha ,\ \beta ,\ \gamma \ (\alpha < \beta < \gamma ).$ Find the area of the region bounded by these graphs in terms of $ a,\ \alpha ,\ \beta ,\gamma .$ created by kunny

Taiwan TST 2015 Round 1, 2

Define the function $f:(0,1)\to (0,1)$ by \[\displaystyle f(x) = \left\{ \begin{array}{lr} x+\frac 12 & \text{if}\ \ x < \frac 12\\ x^2 & \text{if}\ \ x \ge \frac 12 \end{array} \right.\] Let $a$ and $b$ be two real numbers such that $0 < a < b < 1$. We define the sequences $a_n$ and $b_n$ by $a_0 = a, b_0 = b$, and $a_n = f( a_{n -1})$, $b_n = f (b_{n -1} )$ for $n > 0$. Show that there exists a positive integer $n$ such that \[(a_n - a_{n-1})(b_n-b_{n-1})<0.\] [i]Proposed by Denmark[/i]

1984 IMO, 1

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

2009 Today's Calculation Of Integral, 503

Prove the following inequality. \[ \frac{2}{2\plus{}e^{\frac 12}}<\int_0^1 \frac{dx}{1\plus{}xe^{x}}<\frac{2\plus{}e}{2(1\plus{}e)}\]

2012 VJIMC, Problem 1

Let $f:[1,\infty)\to(0,\infty)$ be a non-increasing function such that $$\limsup_{n\to\infty}\frac{f(2^{n+1})}{f(2^n)}<\frac12.$$Prove that $$\int^\infty_1f(x)\text dx<\infty.$$

2001 VJIMC, Problem 3

Let $f:(0,+\infty)\to(0,+\infty)$ be a decreasing function which satisfies $\int^\infty_0f(x)\text dx<+\infty$. Prove that $\lim_{x\to+\infty}xf(x)=0$.

2021 JHMT HS, 8

Find the unique integer $a > 1$ that satisfies \[ \int_{a}^{a^2} \left(\frac{1}{\ln x} - \frac{2}{(\ln x)^3}\right) dx = \frac{a}{\ln a}. \]

2009 Putnam, B4

Say that a polynomial with real coefficients in two variable, $ x,y,$ is [i]balanced[/i] if the average value of the polynomial on each circle centered at the origin is $ 0.$ The balanced polynomials of degree at most $ 2009$ form a vector space $ V$ over $ \mathbb{R}.$ Find the dimension of $ V.$

2020 Jozsef Wildt International Math Competition, W22

Prove that $$\operatorname{Re}\left(\operatorname{Li}_2\left(\frac{1-i\sqrt3}2\right)+\operatorname{Li}_2\left(\frac{\sqrt3-i}{2\sqrt3}\right)\right)=\frac{7\pi^2}{72}-\frac{\ln^23}8$$ where as usual $$\operatorname{Li}_2(z)=-\int^z_0\frac{\ln(1-t)}tdt,z\in\mathbb C\setminus[1,\infty)$$ [i]Proposed by Paolo Perfetti[/i]

2005 Today's Calculation Of Integral, 47

Find the condition of $a,b$ for which the function $f(x)\ (0\leq x\leq 2\pi)$ satisfying the following equality can be determined uniquely,then determine $f(x)$, assuming that $f(x) $ is a continuous function at $0\leq x\leq 2\pi$. \[f(x)=\frac{a}{2\pi}\int_0^{2\pi} \sin (x+y)f(y)dy+\frac{b}{2\pi}\int_0^{2\pi} \cos (x-y)f(y)dy+\sin x+\cos x\]

2011 Today's Calculation Of Integral, 730

Let $a_n$ be the local maximum of $f_n(x)=\frac{x^ne^{-x+n\pi}}{n!}\ (n=1,\ 2,\ \cdots)$ for $x>0$. Find $\lim_{n\to\infty} \ln \left(\frac{a_{2n}}{a_n}\right)^{\frac{1}{n}}$.

2009 Indonesia TST, 3

Let $ x,y,z$ be real numbers. Find the minimum value of $ x^2\plus{}y^2\plus{}z^2$ if $ x^3\plus{}y^3\plus{}z^3\minus{}3xyz\equal{}1$.

2010 District Olympiad, 3

Let $ a < c < b$ be three real numbers and let $ f: [a,b]\rightarrow \mathbb{R}$ be a continuos function in $ c$. If $ f$ has primitives on each of the intervals $ [a,c)$ and $ (c,b]$, then prove that it has primitives on the interval $ [a,b]$.

2008 Romania National Olympiad, 3

Let $ f: \mathbb R \to \mathbb R$ be a function, two times derivable on $ \mathbb R$ for which there exist $ c\in\mathbb R$ such that \[ \frac { f(b)\minus{}f(a) }{b\minus{}a} \neq f'(c) ,\] for all $ a\neq b \in \mathbb R$. Prove that $ f''(c)\equal{}0$.

1999 Harvard-MIT Mathematics Tournament, 1

Find all twice differentiable functions $f(x)$ such that $f^{\prime \prime}(x)=0$, $f(0)=19$, and $f(1)=99$.